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Planet formation Models

• Growing atoms into giant planets spans ~45 
orders of magnitude in mass!
• At least 6 physical processes on timescales 
spanning ~23 orders of magnitude!

• How did our solar system form? 
• How can we the diversity of planetary systems in nature?
• Is our solar system special?

Image credit: NASA/Ames/JPL-Caltech/T. Pyle
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Where to Planet Initially Form?

Illustration by E. Chiang 
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Orbital Migration through Disk

?

Illustration by E. Chiang 
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GLS

Planet Scattering

Illustration by E. Chiang 
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GLS

Planetessimal Scattering

Ford & Chiang 2007
Goldreich et al 2004

Kenyon & Bromley 06
Thommes et al. 99, 02

Ford & Chiang 2007
Goldreich et al 2004

Kenyon & Bromley 06
Thommes et al. 99, 02Illustration by E. Chiang 



7

GLS

What Determines Final Orbits?

Difference in architectures of systems with:
– Giant planets only?
– Low-mass planets only?
– Both giant & low-mass planets?

Illustration by E. Chiang 



Exoplanet Discovery Techniques

Marois et al.



Measure Shift of Absorption Lines to Measure Shift of Absorption Lines to 
Determine the Radial Velocity of StarDetermine the Radial Velocity of Star

Image of StarImage of Star’’s Spectrum on Detectors Spectrum on Detector

N.A.Sharp, NOAO/NSO/Kitt Peak FTS/AURA/NSF 



Census of Exoplanets (w/ Doppler observations)

NASA



Two Planet System Discovered by 
Doppler Technique (24 Sextans)

Johnson et al. 2011



Uncertainty in Orbital Periods
(24 Sextans)

Johnson et al. 2011

H
is

to
gr

am
H

is
to

gr
am

Ke
pl

er
ia

n

N-Body

N
-B

od
y

Keplerian



Computational Challenge
• Analyzing radial velocity (or other) observations of 

extrasolar planetary systems with multiple 
planets.  
– parameter estimation via Markov chain Monte Carlo 
– ~7xNplanets model parameters
– ~107-1010 model evaluations
– Parallelized via Differential Evolution MCMC 
– Also want to test models for long-term stability 
– Ideally, automated, with estimates updated each time 

a new observation is obtained
• Need algorithms that efficiently explore high-

dimensional parameter space
• Conventionally use clusters w/ OpenMP
• Moving to Graphics Processing Units 



Shadow of a Distant Planet
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Kepler
Mission

• NASA, photometry of >150,000 stars
• Looking for Earth-like planets in transit
• 50μmag in 6 hours; 30 minute cadence
• First ~210 days went public last week

NASA/Ames



Kepler’s First Light

NASA/Ames
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Kepler‐9 b‐d Kepler‐11 b‐gKepler‐10b
Kepler’s Abundance of Riches
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A Simple CPU Implementation
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CPU parallelization (trivial: run N=Ncores jobs at a time)
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What is in a Intel Core i7?

~0.1% Devoted to Floating Point Arithmetic!
Intel Corp.



GPU: Massively Multi-core 
Processor

‐ Hundreds of simple cores (ALUs)

‐ Minimal program control logic

‐ Exposed memory hierarchy

‐ Zero‐overhead thread context 
switching

NVIDIA Corp.



GPU Design: Graphics Processing Units Heritage

• All cores execute the same program on different data
– Process large streams of data with small, independent, arithmetic 

intensive, programs
• E.g., transforming the pixels of an image
• Transforming geometry in 3D games
• Shading polygons 3D games

• Lots of raw computational power
• 80% of GPU transistors are devoted to math
• Fast basic arithmetic 
• Hardware implementation of common transcendental functions (e.g., 

sin, cos, exp, ln, …)

• Excellent overlap with needs of typical scientific codes

NVIDIA Corp.



GPU Challenges
• Programming (human time overhead)

• Is problem highly parallelizable? 
• Branching (special cases, collisions, binaries, etc.)

• Memory latency (want lots of computation on 
relatively few numbers)

• CPU <-> GPU Data Transfers
• Speed up kernel by x100, other parts of 

code become significant
• Keeping up with the times (new architectures)



Simiple GPU parallelization 
(slightly nontrivial: N~16 ͯ Ncores jobs in 1 process)
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GPUs keep getting better: Fermi
• “Upto 8x faster double precision” (750 GFLOPS)
• 512 (vs 240) cores
• 4 Special Function Units

per multiprocessor (vs 1)
• Increase shared memory 
• On GPU memory cache
• Atomic ops 5-20x faster
• Fewer registers per core
• Favors algorithms w/ finer 

grained parallelization

NVIDIA Corp.



High Performance GPU parallelization 
(challenging: N~few ͯ Ncores jobs in 1 process)
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A Moment of Zen…
• “About GPUs, this is NOT…”
• This is about CPUs, 5 years from now
• We must:

– (Re)learn how to code for 1000-core, 
shared memory machines

– Have the basic tools to efficiently use 
them (e.g., ODE and N-body solvers)

• Obtaining 10-100x speedup NOW 
doesn’t hurt either ☺

• For more about Swarm-NG 
http://www.astrogpu.org/



NASA/JPL-Caltech/T. Pyle 

Example Application
Characterizing (the very small) 
uncertainties in masses, radii 
and orbital parameters in 
systems with a transiting 
circumbinary planet



Kepler-16

Doyle   et al. 2011



Doyle   et al. 2011
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Precise Masses & Radii

Doyle   et al. 2011



Exquisite Precision in Mass & Radius

Winn et al. 2011



Questions

NASA


