

UF Research Computing

Introduction to Galaxy at UF HPC

Oleksandr Moskalenko
Assoc. Sci., UF HPC Center
Biological Applications Support
Matt Gitzendanner
Assoc Sci., Biology/HPC Training

Today's research computing

Approaches

Approaches

Approaches

► NCBI/BLAST/blastn suite

blastn blastp blastx tblastn tblastx

Enter Query Sequence

BLASTN programs search nucleotide databases using a nucleotide query. [more...](#)Enter accession number(s), gi(s), or FASTA sequence(s) [?](#)[Clear](#)Query subrange [?](#)

Or, upload file

[Choose File](#)No file chosen [?](#)

Job Title

Enter a descriptive title for your BLAST search [?](#) Align two or more sequences [?](#)

Choose Search Set

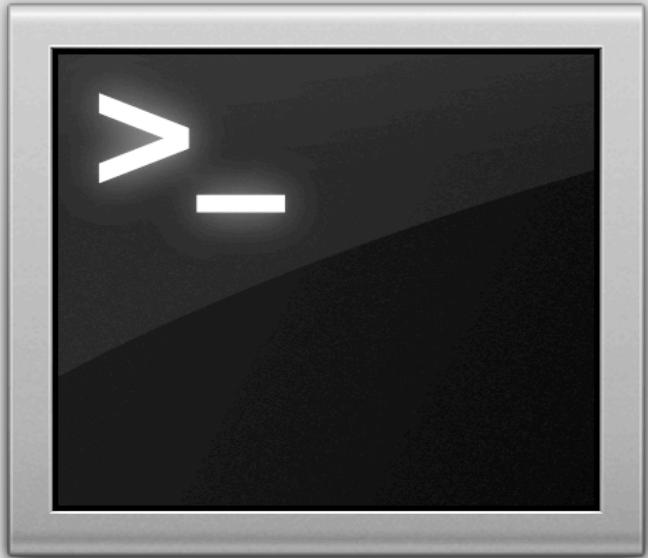
Database

 Human genomic + transcript Mouse genomic + transcript Others (nr etc.):[Human genomic plus transcript \(Human G+T\)](#) [?](#)Exclude
Optional Models (XM/XP) Uncultured/environmental sample sequencesEntrez Query
OptionalEnter an Entrez query to limit search [?](#)

Program Selection

Optimize for

- Highly similar sequences (megablast)
- More dissimilar sequences (discontiguous megablast)
- Somewhat similar sequences (blastn)


Choose a BLAST algorithm [?](#)

BLAST

Search **database Human G+T** using **Megablast (Optimize for highly similar sequences)** Show results in a new window[+ Algorithm parameters](#)

Command Line Environment

Head node

Login to
head
node

Scheduler

Interactive
session or batch
submission

Computing
resources

Your job
runs on the
cluster

What is Galaxy?

Bio-IT World.com
Indispensable Technologies Driving Discovery, Development, and Clinical Trials

Drug Discovery | eClinical Trials | IT & Informatics | Publications | Resource Center | Advertise | [Top Searches](#)

September 28, 2011 | Bio-IT World > Galaxy Provides Life Support for NGS Exploration

[Subscribe](#)
[Podcasts](#)
[Webcasts](#)
[Web Symposia](#)
[Life Science Jobs](#)
[White Papers & Special Reports](#)
[Publication & eNews](#)
[RSS](#)
[About](#)

Galaxy Provides Life Support for NGS Exploration

Popular open-source platform offers easy access to computational analysis tools.

By Kevin Davies

September 27, 2011 | Enter the term "galaxy" in a Web search engine, Penn State's Anton Nekrutenko muses, and the top hits are likely to be an astrophysical entity or "a very bad soccer team." But making fast strides up the web charts is the Galaxy open-source tool, which is coming into its own as more and more researchers seek ways to analyze and manipulate next-generation sequencing (NGS) and other large

all or download you can analyze roles and much, for Comparative Taylor, v

Cambridge Healthtech Institute

CHI Home | Conferences | Reports | [Top Searches](#)

Galaxy / UF HPC

Analyze Data | Workflow | Shared Data | Admin | Help | User

Tools Options

- Get Data
- Send Data
- ENCODE Tools
- Lift-Over
- Text Manipulation
- Filter and Sort
- Join, Subtract and Group
- Convert Formats
- Extract Features
- Fetch Sequences
- Fetch Alignments
- Get Genomic Scores
- Operate on Genomic Intervals
- Statistics
- Graph/Display Data
- Regional Variation
- Multiple regression
- Multivariate Analysis
- Evolution
- Motif Tools
- Multiple Alignments
- Metagenomic analyses
- FASTA manipulation
- NCBLAST

BLASTN 2.2.25+

Reference:
Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schäffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", *Nucleic Acids Res.* 25:3389-3402.

Database: All GenBank+EMBL+DDBJ+PDB sequences (but no EST, STS, GSS, environmental samples or phase 0, 1 or 2 HTGS sequences)
14,487,257 sequences; 37,277,922,133 total letters

Query: gi|344217682|dbj|AB665989.1| Dendropanax trifidus rbcL gene for ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit, partial cds

Length=744

Sequences producing significant alignments:

dbj|AB665989.1| Dendropanax trifidus rbcL gene for ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit, partial cds
dbj|D44571.1|KPUCPRC20| Kalopanax pictus chloroplast gene for Rib...
gb|U50246.1|KPUS0246| Kalopanax pictus ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit, partial cds
gb|DQ133807.1| Eleutherococcus setchuenensis ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit, partial cds
gb|DQ133796.1| Eleutherococcus sessiliflorus ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit, partial cds

History Options

UFGI Grad Demo 2.5 Mb

7: UCSC Main on Human:.snp125 (chr16:135000-175000) 0

6: megablast on db 0

5: blastn on db 0

4: blastn on db 0

3: blastn on db 0

2: RBCL blastn on nt 0

1: RBCL 0

What is Galaxy?

◆ Computational biology platform

- Open and Web-based
- Accessible
- Reproducible
- Transparent

Galaxy Analysis Workspace

Galaxy / UF HPC

Analyze Data Workflow Shared Data Admin Help User

Tools Options

Get Data
Send Data
ENCODE Tools
Lift-Over
Text Manipulation
Filter and Sort
Join, Subtract and Group
Convert Formats
Extract Features
Fetch Sequences
Fetch Alignments
Get Genomic Scores
Operate on Genomic Intervals
Statistics
Graph/Display Data
Regional Variation
Multiple regression
Multivariate Analysis
Evolution
Motif Tools
Multiple Alignments
Metagenomic analyses
FASTA manipulation
NCBI BLAST+
NGS: QC and manipulation
NGS: Picard (beta)
NGS: Mapping
NGS: Indel Analysis
NGS: RNA Analysis
NGS: SAM Tools

MACS

Treatment file: 3: hg19.chr10.bam

Input file: Selection is Optional

Format: Auto

Effective Genome Size: Human (hg18)

Tag size (Optional): 25

P-Value: 1e-05

Keep duplicate tags at the exact same location?:
 Keep ALL
 Auto by Binomial
 Keep Single

Use Model?: True

small fold enrichment for model building: 10

large fold: 30

Advanced Options:

History Options

- 0915 Macs Exercise 5.3 Gb
- 35: Summary Statistics on data 28
- 33: UCSC Main on Human: ct UserTrack 3545 (chr1:156690-165971)
- 31: MACS job log on hg19.chr9.bam
- 30: MACS wiggle on hg19.chr9.bam
- 29: MACS xls on hg19.chr9.bam
- 28: MACS summits on hg19.chr9.bam
- 27: MACS peaks on hg19.chr9.bam
- 26: BAM-to-SAM on data 25: converted SAM
- 25: hg19.chr9.bam
- 24: hg19.chr8.bam
- 23: hg19.chr7.bam

Galaxy Analysis Workspace

Galaxy / UF HPC

Analyze Data Workflow Shared Data Admin Help User

Tools Options

[Get Data](#)
[Send Data](#)
[ENCODE Tools](#)
[Lift-Over](#)
[Text Manipulation](#)
[Filter and Sort](#)
[Join, Subtract and Group](#)
[Convert Formats](#)
[Extract Features](#)
[Fetch Sequences](#)
[Fetch Alignments](#)
[Get Genomic Scores](#)
[Operate on Genomic Intervals](#)
[Statistics](#)
[Graph/Display Data](#)
[Regional Variation](#)
[Multiple regression](#)
[Multivariate Analysis](#)
[Evolution](#)
[Motif Tools](#)

NGS: Peak Calling

- [MACS Model-based Analysis for ChIP-Seq](#)
- [CCAT Control-based ChIP-seq Analysis Tool](#)
- [GeneTrack indexer on a BED file](#)
- [Peak predictor on GeneTrack index](#)

NGS: Simulation

SNP/WGA: Data; Filters

MACS

Treatment file: 3: hg19.chr10.bam

Input file: Selection is Optional

Format: Auto

Effective Genome Size: Human (hg18)

Tag size (Optional): 25

P-Value: 1e-05

Keep duplicate tags at the exact same location?:
 Keep ALL
 Auto by Binomial
 Keep Single

Use Model?: True

small fold enrichment for model building: 10

large fold: 30

Advanced Options:

History Options

- 0915 Macs Exercise 5.3 Gb
- 35: Summary Statistics on data 28
- 33: UCSC Main on Human: ct UserTrack 3545 (chr1:156690-165971)
- 31: MACS job log on hg19.chr9.bam
- 30: MACS wiggle on hg19.chr9.bam
- 29: MACS xls on hg19.chr9.bam
- 28: MACS summits on hg19.chr9.bam
- 27: MACS peaks on hg19.chr9.bam
- 26: BAM-to-SAM on data 25: converted SAM
- 25: hg19.chr9.bam
- 24: hg19.chr8.bam
- 23: hg19.chr7.bam

Galaxy

Galaxy / UF HP

Tools

Options

- [Get Data](#)
- [Send Data](#)
- [ENCODE Tools](#)
- [Lift-Over](#)
- [Text Manipulation](#)
- [Filter and Sort](#)
- [Join, Subtract and Group](#)
- [Convert Formats](#)

Extract Features

Fetch Sequences

Fetch Alignments

Get Genomic Scores

Operate on Genomic Intervals

Statistics

Graph/Display Data

Regional Variation

Multiple regression

Multivariate Analysis

Evolution

Motif Tools

NGS: Peak Calling

- [MACS Model-based Analysis for ChIP-Seq](#)
- [CCAT Control-based ChIP-seq Analysis Tool](#)
- [GeneTrack indexer on a BED file](#)
- [Peak predictor on GeneTrack index](#)

NGS: Simulation

SNP/WGA: Data; Filters

MACS

Treatment file:

3: hg19.chr10.bam

Input file:

Selection is Optional

Format:

Auto

Effective Genome Size:

Human (hg18)

Tag size (Optional):

25

P-Value:

1e-05

Keep duplicate tags at the exact same location?:

Keep ALL

Auto by Binomial

Keep Single

Use Model?:

True

small fold enrichment for model building:

10

large fold:

30

Advanced Options:

No

Diagnosis Report:

No

Execute

workspace

History

Options

0915 Macs Exercise

5.3 Gb

35: Summary Statistics on data 28

33: UCSC Main on Human: ct UserTrack 3545 (chr1:156690-165971)

31: MACS job log on hg19.chr9.bam

30: MACS wiggle on hg19.chr9.bam

29: MACS xls on hg19.chr9.bam

28: MACS summits on hg19.chr9.bam

27: MACS peaks on hg19.chr9.bam

26: BAM-to-SAM on data 25: converted SAM

25: hg19.chr9.bam

24: hg19.chr8.bam

23: hg19.chr7.bam

Galaxy

Galaxy / UF HP

Tools

Options

[Get Data](#)[Send Data](#)[ENCODE Tools](#)[Lift-Over](#)[Text Manipulation](#)[Filter and Sort](#)[Join, Subtract and Group](#)[Convert Formats](#)[Extract Features](#)[Fetch Sequences](#)[Fetch Alignments](#)[Get Genomic Scores](#)[Operate on Genomic Intervals](#)[Statistics](#)[Graph/Display Data](#)[Regional Variation](#)[Multiple regression](#)[Multivariate Analysis](#)[Evolution](#)[Motif Tools](#)

NGS: Peak Calling

- [MACS](#) Model-based Analysis for ChIP-Seq
- [CCAT](#) Control-based ChIP-seq Analysis Tool
- [GeneTrack](#) indexer on a BED file
- [Peak predictor](#) on GeneTrack index

NGS: Simulation

SNP/WGA: Data; Filters

MACS

Treatment file:

3: hg19.chr10.bam

Input file:

Selection is Optional

Format:

Auto

Effective Genome Size:

Human (hg18)

Tag size (Optional):

25

P-Value:

1e-05

Keep duplicate tags at the exact same location?:

Keep ALL

Auto by Binomial

Keep Single

Use Model?:

True

small fold enrichment for model building:

10

large fold:

30

Advanced Options:

No

Diagnosis Report:

No

Execute

1

History

Options

0915 Macs Exercise

5.3 Gb

35: [Summary Statistics on data 28](#)

33: [UCSC Main on Human: ct UserTrack 3545 \(chr1:156690-165971\)](#)

31: [MACS job log on hg19.chr9.bam](#)

30: [MACS wiggle on hg19.chr9.bam](#)

29: [MACS xls on hg19.chr9.bam](#)

28: [MACS summits on hg19.chr9.bam](#)

27: [MACS peaks on hg19.chr9.bam](#)

26: [BAM-to-SAM on data 25: converted SAM](#)

25: [hg19.chr9.bam](#)

Galaxy

- Tools
- [Get Data](#)
- [Send Data](#)
- [ENCODE Tools](#)
- [Lift-Over](#)
- [Text Manipulation](#)
- [Filter and Sort](#)
- [Join, Subtract and G](#)
- [Convert Formats](#)
- [Extract Features](#)
- [Fetch Sequences](#)
- [Fetch Alignments](#)
- [Get Genomic Scores](#)
- [Operate on Genomic](#)
- [Statistics](#)
- [Graph/Display Data](#)
- [Regional Variation](#)
- [Multiple regression](#)
- [Multivariate Analysi](#)
- [Evolution](#)
- [Motif Tools](#)
- NGS: Peak Calling**
 - [MACS Model-based A](#)
 - [ChIP-Seq](#)
 - [CCAT Control-based](#)
 - [Analysis Tool](#)
 - [GeneTrack indexer or](#)
 - [Peak predictor on Ge](#)
 - [index](#)
- NGS: Simulation**
- SNP/WGA: Data; Filters**

MACS

chr9	179077	179078	MACS_peak_1	14.00
chr9	503365	503366	MACS_peak_2	17.00
chr9	764211	764212	MACS_peak_3	20.00
chr9	2241905	2241906	MACS_peak_4	15.00
chr9	3161806	3161807	MACS_peak_5	10.00
chr9	3467733	3467734	MACS_peak_6	14.00
chr9	3526275	3526276	MACS_peak_7	19.00
chr9	3809982	3809983	MACS_peak_8	17.00
chr9	3907058	3907059	MACS_peak_9	15.00
chr9	4315804	4315805	MACS_peak_10	17.00
chr9	4887865	4887866	MACS_peak_11	11.00
chr9	5186618	5186619	MACS_peak_12	13.00
chr9	5439013	5439014	MACS_peak_13	14.00
chr9	5510340	5510341	MACS_peak_14	13.00
chr9	5566231	5566232	MACS_peak_15	11.00
chr9	5609455	5609456	MACS_peak_16	9.00
chr9	5832438	5832439	MACS_peak_17	12.00
chr9	6015764	6015765	MACS_peak_18	17.00
chr9	6038019	6038020	MACS_peak_19	16.00
chr9	6681231	6681232	MACS_peak_20	29.00
chr9	6757871	6757872	MACS_peak_21	12.00
chr9	7028374	7028375	MACS_peak_22	11.00
chr9	9428809	9428810	MACS_peak_23	8.00
chr9	9442235	9442236	MACS_peak_24	5.00
chr9	9487422	9487423	MACS_peak_25	3.00
chr9	9524985	9524986	MACS_peak_26	5.00
chr9	9677411	9677412	MACS_peak_27	7.00
chr9	12776446	12776447	MACS_peak_28	14.00
chr9	13034378	13034379	MACS_peak_29	12.00
chr9	14201262	14201263	MACS_peak_30	12.00
chr9	15038466	15038467	MACS_peak_31	7.00
chr9	16371450	16371451	MACS_peak_32	12.00
chr9	16704876	16704877	MACS_peak_33	10.00
chr9	16964119	16964120	MACS_peak_34	11.00
chr9	17005070	17005071	MACS_peak_35	11.00
chr9	17063745	17063746	MACS_peak_36	10.00
chr9	18168582	18168583	MACS_peak_37	9.00
chr9	19050354	19050355	MACS_peak_38	13.00
chr9	21085741	21085742	MACS_peak_39	47.00
chr9	21591829	21591830	MACS_peak_40	16.00
chr9	22016338	22016339	MACS_peak_41	7.00

Execute

Options ▾

5.3 Gb

MACS on

man:
chr1:156690-

1

data

25: nq190chr9.bam

Metadata

History Options ▾

 LANA ChIP peaks on hg19 5.3 Gb

Tags: [LANA](#) [chip](#) [hg19](#) [peaks](#) [chr9](#)

Annotation / Notes:
Peak calling on LANA ChIP-Seq data using Human chromosome 9 from hg19 build

27: MACS peaks on hg19.chr9.bam

236 regions format: bed, database: ?

Tags: [LANA](#) [chip](#) [hg19](#) [chr9](#) [MACS](#)

[view in GeneTrack](#)

1.Chrom	2.Start	3.End	4.Name
chr9	176690	179457	MACS_pea
chr9	502364	506252	MACS_pea
chr9	763181	765291	MACS_pea
chr9	2241428	2243431	MACS_pea
chr9	3161298	3162300	MACS_pea
chr9	3467312	3468066	MACS_pea

Getting Data into Galaxy

- ◆ Upload a file from your computer
 - scp to HPC and load from within Galaxy
 - Copy files to HPC using Samba
- ◆ External data
 - UCSC table browser
 - Biomart
 - interMine / modMine
 - EuPathDB
 - EncodeDB
 - EpiGRAPH
 - FlyMine
 - GrameneMart...

Data libraries

Data Library “GMS 6001 MACS Exercise”

MACS test data

<input type="checkbox"/> Name	Message	Uploaded By	Date	File Size
<input type="checkbox"/> 2010-12-14 7 hg19 aln sorted.bam ▾		om@hpc.ufl.edu	2011-09-13	1.6 Gb
<input type="checkbox"/> 2010-12-14 7 hhv8 aln sorted.bam ▾		om@hpc.ufl.edu	2011-09-13	1.4 Gb
<input type="checkbox"/> hg19.chr10.bam ▾		om@hpc.ufl.edu	2011-09-14	80.8 Mb
<input type="checkbox"/> hg19.chr11.bam ▾		om@hpc.ufl.edu	2011-09-14	82.5 Mb
<input type="checkbox"/> hg19.chr12.bam ▾		om@hpc.ufl.edu	2011-09-14	74.9 Mb
<input type="checkbox"/> hg19.chr13.bam ▾		om@hpc.ufl.edu	2011-09-14	50.9 Mb
<input type="checkbox"/> hg19.chr14.bam ▾		om@hpc.ufl.edu	2011-09-14	36.1 Mb
<input type="checkbox"/> hg19.chr15.bam ▾		om@hpc.ufl.edu	2011-09-14	48.1 Mb
<input type="checkbox"/> hg19.chr16.bam ▾		om@hpc.ufl.edu	2011-09-14	55.9 Mb
<input type="checkbox"/> hg19.chr17.bam ▾		om@hpc.ufl.edu	2011-09-14	64.5 Mb
<input type="checkbox"/> hg19.chr18.bam ▾		om@hpc.ufl.edu	2011-09-14	33.5 Mb
<input type="checkbox"/> hg19.chr19.bam ▾		om@hpc.ufl.edu	2011-09-14	39.6 Mb
<input type="checkbox"/> hg19.chr1.bam ▾		om@hpc.ufl.edu	2011-09-14	148.5 Mb
<input type="checkbox"/> hg19.chr20.bam ▾		om@hpc.ufl.edu	2011-09-14	38.5 Mb
<input type="checkbox"/> hg19.chr21.bam ▾		om@hpc.ufl.edu	2011-09-14	17.5 Mb
<input type="checkbox"/> hg19.chr22.bam ▾		om@hpc.ufl.edu	2011-09-14	16.9 Mb
<input type="checkbox"/> hg19.chr2.bam ▾		om@hpc.ufl.edu	2011-09-14	126.3 Mb
<input type="checkbox"/> hg19.chr2.sam ▾		om@hpc.ufl.edu	2011-09-14	488.0 Mb
<input type="checkbox"/> hg19.chr3.bam ▾		om@hpc.ufl.edu	2011-09-14	118.0 Mb
<input type="checkbox"/> hg19.chr4.bam ▾		om@hpc.ufl.edu	2011-09-14	85.7 Mb
<input type="checkbox"/> hg19.chr5.bam ▾		om@hpc.ufl.edu	2011-09-14	102.7 Mb
<input type="checkbox"/> hg19.chr6.bam ▾		om@hpc.ufl.edu	2011-09-14	65.7 Mb
<input type="checkbox"/> hg19.chr7.bam ▾		om@hpc.ufl.edu	2011-09-14	89.9 Mb
<input type="checkbox"/> hg19.chr8.bam ▾		om@hpc.ufl.edu	2011-09-14	85.9 Mb
<input type="checkbox"/> hg19.chr9.bam ▾		om@hpc.ufl.edu	2011-09-14	64.8 Mb

For selected datasets:

Data Access Control

Roles associated with new group

HPC test ChIP-seq analyses

Groups

search

[Advanced Search](#)

[Name ↓](#)

Users

Roles

[HPC ▾](#)

0

2

[Taylor HPC Lab ▾](#)

2

1

For 0 selected groups: [Delete](#) [Undelete](#) [Purge](#)

Roles

search

[Advanced Search](#)

Users associated with new group

om@hpc.ufl.edu

magitz@ufl.edu

[Name ↓](#)

[Description](#)

Type

Groups

[HPC ▾](#)

Role for group HPC

system

1

[HPC test ChIP-seq analyses ▾](#)

Test analyses of ChIP-seq data

admin

1

Users

search

[Advanced Search](#)

[Email ↓](#)

[User Name](#)

Groups

Roles

External

Last Login

[aedison@ufl.edu ▾](#)

aedison

0

1

yes

Sep 15, 2011

[bostwick@ufl.edu ▾](#)

bostwick

0

1

yes

Sep 15, 2011

[cgraves3@ufl.edu ▾](#)

cgraves3

0

1

yes

Sep 15, 2011

[cjeffrey@ufl.edu ▾](#)

cjeffrey

0

1

yes

Sep 15, 2011

[coltd3@ufl.edu ▾](#)

coltd3

0

1

yes

Sep 15, 2011

Galaxy Tool Suites

- ◆ Text Manipulation
- ◆ Format Converters
- ◆ Filtering and Sorting
- ◆ Join, Subtract, Group
- ◆ Sequence Tools
- ◆ Multi-species Alignment Tools
- ◆ Genomic Interval Operation
- ◆ Summary Statistics, graphing
- ◆ Regional Variation
- ◆ EMBOSS
- ◆ Evolution/Phylogeny
- ◆ RNA-Seq
- ◆ ChIP-Seq
- ◆ GATK

A galaxy of tools

GS: QC and manipulation

ILLUMINA DATA

FASTQ Groomer convert between various FASTQ quality formats

FASTQ splitter on joined paired end reads

FASTQ joiner on paired end reads

FASTQ Summary Statistics by column

ROCHE-454 DATA

Build base quality distribution

Select high quality segments

Combine FASTA and QUAL into FASTQ

AB-SOLID DATA

Convert SOLID output to fastq

Compute quality statistics for SOLID data

Draw quality score boxplot for SOLID data

GENERIC FASTQ MANIPULATION

Filter FASTQ reads by quality score and length

FASTQ Trimmer by column

FASTQ Quality Trimmer by sliding window

EVOLUTION

Metagenomic analyses

Human Genome Variation

EMBOSS

NGS TOOLBOX BETA

NGS: QC and manipulation

NGS: Mapping

ILLUMINA

- Map with Bowtie for Illumina

- Map with BWA for Illumina

ROCHE-454

- Lastz map short reads against reference sequence

- Megablast compare short reads against htgs, nt, and wgs databases

- Parse blast XML output

AB-SOLID

- Map with Bowtie for SOLID

NGS: SAM Tools

NGS: Indel Analysis

NGS: Peak Calling

NGS: RNA Analysis

RGENETICS

SNP/WGA: Data; Filters

SNP/WGA: QC; LD; Plots

SNP/WGA: Statistical Models

NGS TOOLBOX BETA

NGS: QC and manipulation

NGS: Mapping

NGS: SAM Tools

- Filter SAM on bitwise flag values
- Convert SAM to interval
- SAM-to-BAM converts SAM format to BAM format
- BAM-to-SAM converts BAM format to SAM format
- Merge BAM Files merges BAM files together
- Generate pileup from BAM dataset
- Filter pileup on coverage and SNPs
- Pileup-to-Interval condenses pileup format into ranges of bases
- flagstat provides simple stats on BAM files

NGS: Indel Analysis

NGS: Peak Calling

NGS: RNA Analysis

RGENETICS

SNP/WGA: Data; Filters

SNP/WGA: QC; LD; Plots

SNP/WGA: Statistical Models

NGS: SAM Tools

NGS: Indel Analysis

- Filter Indels for SAM
- Extract indels from SAM
- Indel Analysis

NGS: Peak Calling

- MACS Model-based Analysis of ChIP-Seq
- GeneTrack indexer on a BED file
- Peak predictor on GeneTrack index

NGS: RNA Analysis

RNA-SEQ

- Tophat Find splice junctions using RNA-seq data
- Cufflinks transcript assembly and FPKM (RPKM) estimates for RNA-Seq data
- Cuffcompare compare assembled transcripts to a reference annotation and track Cufflinks transcripts across multiple experiments
- Cuffdiff find significant changes in transcript expression, splicing, and promoter use

FILTERING

- Filter Combined Transcripts using tracking file

Galaxy Workflows

Unknown
This tool cannot be used in workflows

BAM-to-SAM
 Include "BAM-to-SAM" in workflow

Convert Genomic Intervals To Strict BED6
 Include "Convert Genomic Intervals To Strict BED6" in workflow

MACS
 Include "MACS" in workflow

Convert BED to GeneTrack Index
 Include "Convert BED to GeneTrack Index" in workflow

25: hg19.chr9.bam
 Treat as input dataset

26: BAM-to-SAM on data 25: converted SAM

27: MACS peaks on hg19.chr9.bam

27: MACS peaks on hg19.chr9.bam

28: MACS summits on hg19.chr9.bam

29: MACS xls on hg19.chr9.bam

30: MACS wiggle on hg19.chr9.bam

31: MACS job log on hg19.chr9.bam

27: MACS peaks on hg19.chr9.bam

Extract Workflow
Dataset Security
Show Deleted Datasets
Show Hidden Datasets
Show Structure
Export to File
Delete
Other Actions
Import from File

27: MACS peaks on hg19.chr9.bam

26: BAM-to-SAM on data 25: converted SAM

25: hg19.chr9.bam

24: hg19.chr8.bam

23: hg19.chr7.bam

22: hg19.chr6.bam

21: hg19.chr5.bam

20: hg19.chr4.bam

19: hg19.chr3.bam

Galaxy Workflows

Workflow Canvas | Workflow constructed from history 'LANA ChIP peaks on hg19'

```
graph LR
    A[Input dataset] --> B[BAM-to-SAM]
    B --> C[Convert BED to GeneTrack Index]
    C --> D[MACS]
    D --> E[Convert Genomic Intervals To Strict BED6]
```

Tool: MACS

Treatment file
Data input 'tfile' (interval or sam or bam or eland or elandmulti or bed)

Input file
Data input 'cfile' (interval or sam or bam or eland or elandmulti or bed)

Format: ▾ Auto

Effective Genome Size: Human (hg19)

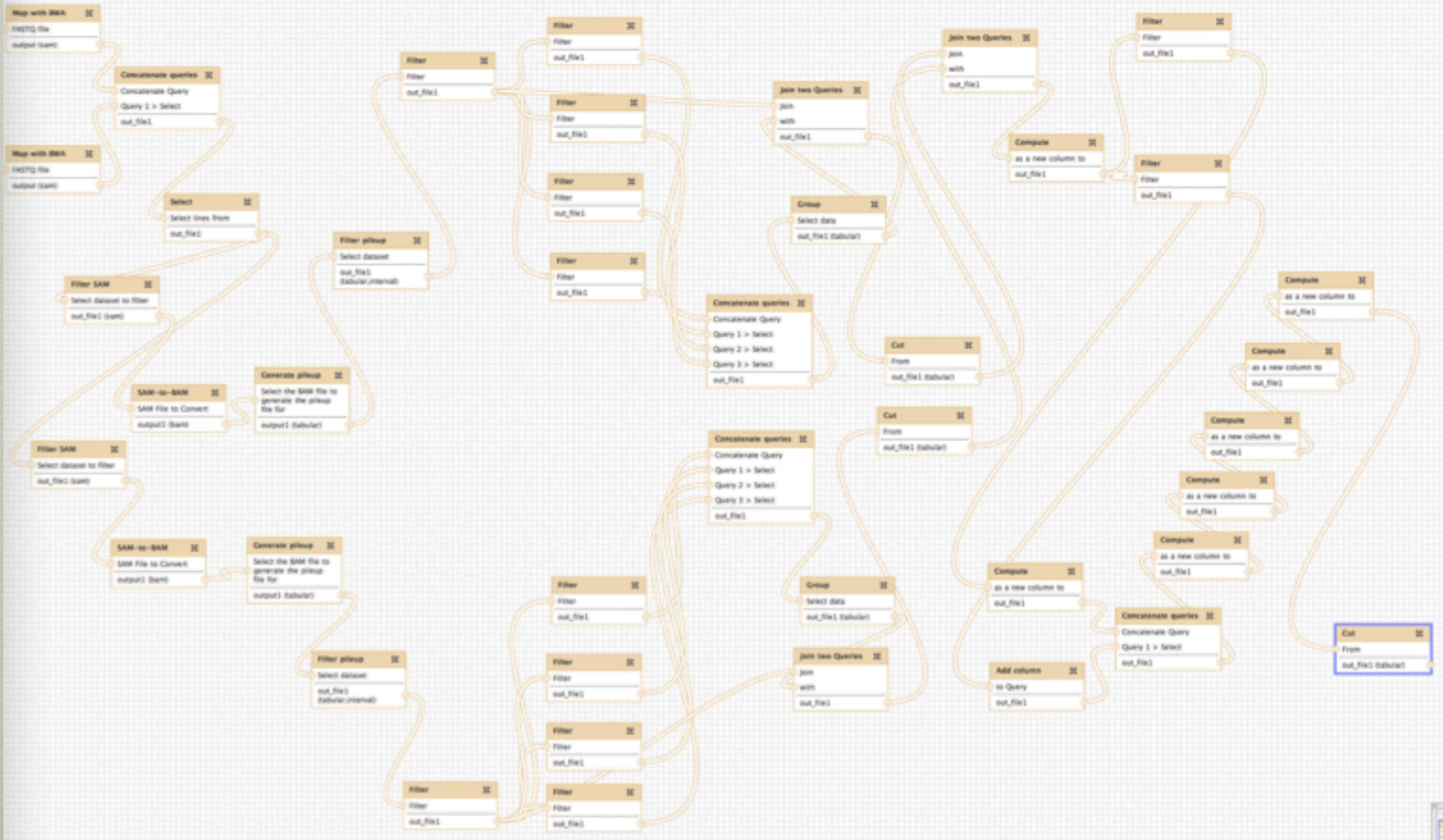
Tag size (Optional): ▾ 25

Details

Edit Workflow Attributes

Name: Workflow constructed from history 'LANA ChIP peaks on hg19'

Tags: LANA, ChIP-Seq, hg19, chr9


Apply tags to make it easy to search for and find items with the same tag.

Annotation / Notes:
This is a partial peak calling with MACS using hg19 and chr9 data

20

Galaxy Workflows

Visualization

Home Genomes Blat Tables Gene Sorter PCR DNA Convert Ensembl

UCSC Genome Browser on Human Feb. 2009 (GRCh37/hg19) Assembly

move <<< << < > >> >>> zoom in 1.5x 3x 10x base zoom out 1.5x 3x 10x

position/search chr10:1-135,534,747 gene jump clear size 135,534,747 bp. configure

chr10 (p15.3-q26.3) [p14 p13 q21.1]

scale chr10: 50 Mb 50000000 100000000

move start < 2.0 > move end < 2.0 >

Click on a feature for details. Click or drag in the base position track to zoom in. Click side bars for track options. Drag side bars or labels up or down to reorder tracks. Drag tracks left or right to new position.

track search default tracks default order hide all add custom tracks track hubs configure reverse resize refresh

collapse all expand all

Use drop-down controls below and press refresh to alter tracks displayed. Tracks with lots of items will automatically be displayed in more compact modes.

refresh

Mapping and Sequencing Tracks

Base Position Chromosome Band STS Markers 18 FISH Clones Recomb Rate Map Contigs

dense ▲ hide ▲ hide ▲ hide ▲ hide ▲

Sharing and publishing

Share or Publish History 'LANA ChIP peaks on hg19'

Making History Accessible via Link and Publishing It

This history is currently restricted so that only you and the users listed below can access it. You can:

Make History Accessible via Link

Generates a web link that you can share with other people so that they can view and import the history.

Make History Accessible and Publish

Makes the history accessible via link (see above) and publishes the history to Galaxy's [Published Histories](#) section, where it is publicly listed and searchable.

Sharing History with Specific Users

You have not shared this history with any users.

Share with a user

[Back to Histories List](#)

Sharing and publishing

Share or Publish History 'LANA ChIP peaks on hg19'

Making History Accessible via Link and Publishing It

This history is currently **accessible via link and published**.

Anyone can view and import this history by visiting the following URL:

<http://galaxy.hpc.ufl.edu/u/moskalenko/h/lana-chip-peaks-on-hg19>

This history is publicly listed and searchable in Galaxy's [Published Histories](#) section.

You can:

[Unpublish History](#)

Removes this history from Galaxy's [Published Histories](#) section so that it is not publicly listed or searchable.

[Disable Access to History via Link and Unpublish](#)

Disables this history's link so that it is not accessible and removes history from Galaxy's [Published Histories](#) section so that it is not publicly listed or searchable.

Sharing History with Specific Users

The following users will see this history in their history list and will be able to view, import, and run it.

[Email](#)

magitz@ufl.edu ▾

[Share with another user](#)

Sharing and publishing

Share or Publish Workflow 'LANA ChIP peaks on hg19'

Making Workflow Accessible via Link and Publishing It

This workflow is currently **accessible via link and published**.

Anyone can view and import this workflow by visiting the following URL:

<http://galaxy.hpc.ufl.edu/u/moskalenko/w/lana-chip-peaks-on-hg19>

This workflow is publicly listed and searchable in Galaxy's [Published Workflows](#) section.

You can:

[Unpublish Workflow](#)

Removes this workflow from Galaxy's [Published Workflows](#) section so that it is not publicly listed or searchable.

[Disable Access to Workflow via Link and Unpublish](#)

Published Workflows

search name, annotation, owner, and tag

[Advanced Search](#)

Name	Annotation	Owner	Community Rating	Community Tags	Last Updated
LANA ChIP peaks on hg19		moskalenko			2 minutes ago

Published Histories

search name, annotation, owner, and tag

[Advanced Search](#)

Name	Annotation	Owner	Community Rating	Community Tags	Last Updated
LANA ChIP peaks on hg19	Peak calling on LANA ChIP-Seq data using Human chromosome 9 from hg19 build	moskalenko		chr9 hg19 peaks lana chip	4 minutes ago

Galaxy pages

[Published Pages](#) | [aun1](#) | Windshield Splatter

Windshield splatter analysis with the Galaxy metagenomic pipeline: A live supplement

SERGEI KOSAKOVSKY POND^{1,2,*}, SAMIR WADHAWAN^{3,6*}, FRANCESCA CHIAROMONTE⁴, GURUPRASAD ANANDA^{1,3}, WEN-YU CHUNG^{1,3,7}, JAMES TAYLOR^{1,5}, ANTON NEKRUTENKO^{1,3} and THE GALAXY TEAM^{1*}

Correspondence should be addressed to [SKP](#), [JT](#), or [AN](#).

How to use this document

This document is a live copy of supplementary materials for [the manuscript](#). It provides access to the **exact** analyses and workflows discussed in the paper, so you can play with them by re-running, changing parameters, or even applying them to your own data. Specifically, we provide the two histories and one workflow found below. You can view these items by clicking on their name to expand them. You can also import these items into your Galaxy workspace and start using them; click on the green plus to import an item. To import workflows you must [create a Galaxy account](#) (unless you already have one) – a hassle-free procedure where you are only asked for a username and password.

This is the Galaxy history detailing the comparison of our pipeline to MEGAN:

[Galaxy History | Galaxy vs MEGAN](#)
Comparison of Galaxy vs. MEGAN pipeline.

This is the Galaxy history showing a generic analysis of metagenomic data. (This corresponds to the "A complete metagenomic pipeline" section of the manuscript and **Figure 3A**):

[Galaxy History | metagenomic analysis](#)

This is the Galaxy workflow for generic analysis of metagenomic data. (This corresponds to the "A complete metagenomic pipeline" section of the manuscript and **Figure 3B**):

[Galaxy Workflow | metagenomic analysis](#)
Generic workflow for performing a metagenomic analysis on NGS data.

Accessing the Data

Windshield Splatter datasets analyzed in this manuscript can be accessed through this [Galaxy Library](#). From there they can be re-analyzed through Galaxy using the above workflows or downloaded.

Supplemental Analysis

Comparison between Galaxy pipeline and Megan

(Use [this link](#) to see Galaxy history representing this analysis. Individual elements of this history are referred to as **History Item 1, 2 and so on** using **bold** typeface)

[About this Page](#)

Author

aun1

Related Pages

[All published pages](#)

[Published pages by aun1](#)

Rating

Community
(6 ratings, 5.0 average)

Tags

Community:

[megan](#) [galaxy](#) [paper](#)

Summary

- ◆ Analyze data without the CLI
- ◆ Visualize the results
- ◆ Publish histories, workflows, and annotated pages
- ◆ Add new tools, get support @ HPC
- ◆ Focus on your science, not minutiae
- ◆ **UF Galaxy** – coming to a browser near you!

Demo

Galaxy / UF HPC /

Analyze Data Workflow Shared Data Help User

Tools Options ▾

- [Get Data](#)
- [Send Data](#)
- [ENCODE Tools](#)
- [Lift-Over](#)
- [Text Manipulation](#)
- [Filter and Sort](#)
- [Join, Subtract and Group](#)
- [Convert Formats](#)
- [Extract Features](#)
- [Fetch Sequences](#)
- [Fetch Alignments](#)
- [Get Genomic Scores](#)
- [Operate on Genomic Intervals](#)
- [Statistics](#)
- [Graph/Display Data](#)
- [Regional Variation](#)
- [Multiple regression](#)
- [Multivariate Analysis](#)
- [Evolution](#)
- [Motif Tools](#)
- [Multiple Alignments](#)
- [Metagenomic analyses](#)
- [FASTA manipulation](#)
- [NCBI BLAST+](#)
- [NGS: QC and manipulation](#)
- [NGS: Picard \(beta\)](#)

History Options ▾

MACS hg19 0 bytes

Your history is empty. Click 'Get Data' on the left pane to start

UNIVERSITY of
FLORIDA

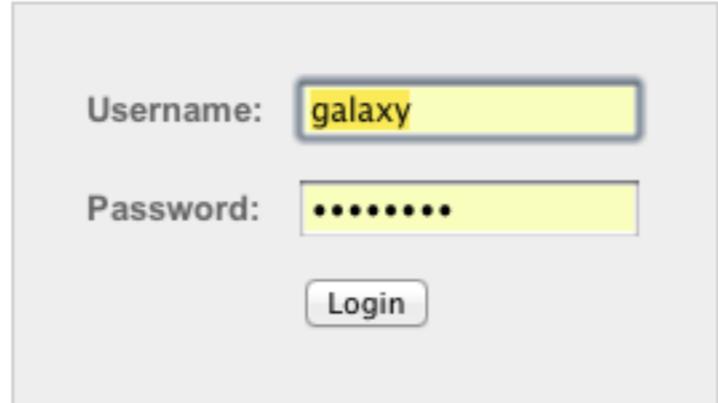
UFL HPC Galaxy News:

- 2001-08-09: Prototype Galaxy Instance

An instance of Galaxy Platform for Biological Research Computing was brought online at the University of Florida High-Performance Computing Center for testing and demonstration purposes. This instance is not available for public use, yet. However, you can email HPC or the biological applications support directly to request to be notified of its general availability.

The Galaxy project is supported in part by NSF, NHGRI, and the Huck Institutes of the Life Sciences.

MACS demo


<http://galaxy.hpc.ufl.edu>

MACS demo

http://galaxy.hpc.ufl.edu

UF HPC Center Login

Username: galaxy

Password:

[Request an account](#)

[Reset my password](#)

History/Shared Data

Galaxy / UF HPC / Analyze Data Workflow Shared Data Help User

Tools Options

- [Get Data](#)
- [Send Data](#)
- [ENCODE Tools](#)
- [Lift-Over](#)
- [Text Manipulation](#)
- [Filter and Sort](#)
- [Join, Subtract and Group](#)
- [Convert Formats](#)
- [Extract Features](#)
- [Fetch Sequences](#)
- [Fetch Alignments](#)
- [Get Genomic Scores](#)
- [Operate on Genomic Intervals](#)
- [Statistics](#)
- [Graph/Display Data](#)
- [Regional Variation](#)
- [Multiple regression](#)
- [Multivariate Analysis](#)
- [Evolution](#)
- [Motif Tools](#)
- [Multiple Alignments](#)
- [Meta](#)
- [FAST](#)
- [NCBI](#)
- [NGS](#)
- [NCSS](#)

History Options

Unnamed history 0 bytes

Your history is empty. Click 'Get Data' on the left pane to start

UF UNIVERSITY of FLORIDA

UF HPC center

UFL HPC Galaxy News:

- [2001-08-09: Prototype Galaxy Instance](#)

An instance of [Galaxy Platform](#) for Biological Research Computing was brought online at the University of Florida [High-Performance Computing Center](#) for testing and demonstration purposes. This instance is not available for public use, yet. However, you can email [HPC](#) or the [biological applications support](#) directly to request

<http://galaxy.hpc.ufl.edu>

Shared Data

Galaxy / UF HPC / Analyze Data Workflow Shared Data Help Use

Data Libraries

search dataset name, info, message, dbke

[Advanced Search](#)

<u>Data library name</u> ↓	<u>Data library description</u>
GMS 6001 MACS Exercise	HPC Intro and MACS exercise on 9/15/11
OM Testing	Test data for Galaxy development

MACS – Load data

Data Library “GMS 6001 MACS Exercise”

MACS test data

<input type="checkbox"/> Name	Message	Uploaded By	Date	File Size
<input type="checkbox"/> 2010-12-14 7 hg19 aln sorted.bam ▾		om@hpc.ufl.edu	2011-09-13	1.6 Gb
<input type="checkbox"/> 2010-12-14 7 hhv8 aln sorted.bam ▾		om@hpc.ufl.edu	2011-09-13	1.4 Gb
<input checked="" type="checkbox"/> hg19.chr10.bam ▾		om@hpc.ufl.edu	2011-09-14	80.8 Mb
<input type="checkbox"/> hg19.chr11.bam ▾		om@hpc.ufl.edu	2011-09-14	82.5 Mb
<input type="checkbox"/> hg19.chr12.bam ▾		om@hpc.ufl.edu	2011-09-14	74.9 Mb
<input type="checkbox"/> hg19.chr13.bam ▾		om@hpc.ufl.edu	2011-09-14	50.9 Mb
<input type="checkbox"/> hg19.chr14.bam ▾		om@hpc.ufl.edu	2011-09-14	36.1 Mb
<input type="checkbox"/> hg19.chr15.bam ▾		om@hpc.ufl.edu	2011-09-14	48.1 Mb
<input type="checkbox"/> hg19.chr16.bam ▾		om@hpc.ufl.edu	2011-09-14	55.9 Mb
<input type="checkbox"/> hg19.chr17.bam ▾		om@hpc.ufl.edu	2011-09-14	64.5 Mb
<input type="checkbox"/> hg19.chr18.bam ▾		om@hpc.ufl.edu	2011-09-14	33.5 Mb
<input type="checkbox"/> hg19.chr19.bam ▾		om@hpc.ufl.edu	2011-09-14	39.6 Mb
<input type="checkbox"/> hg19.chr1.bam ▾		om@hpc.ufl.edu	2011-09-14	148.5 Mb
<input type="checkbox"/> hg19.chr20.bam ▾		om@hpc.ufl.edu	2011-09-14	38.5 Mb
<input type="checkbox"/> hg19.chr21.bam ▾		om@hpc.ufl.edu	2011-09-14	17.5 Mb
<input type="checkbox"/> hg19.chr22.bam ▾		om@hpc.ufl.edu	2011-09-14	16.9 Mb
<input type="checkbox"/> hg19.chr2.bam ▾		om@hpc.ufl.edu	2011-09-14	126.3 Mb
<input type="checkbox"/> hg19.chr2.sam ▾		om@hpc.ufl.edu	2011-09-14	488.0 Mb
<input type="checkbox"/> hg19.chr3.bam ▾		om@hpc.ufl.edu	2011-09-14	118.0 Mb
<input type="checkbox"/> hg19.chr4.bam ▾		om@hpc.ufl.edu	2011-09-14	85.7 Mb
<input type="checkbox"/> hg19.chr5.bam ▾		om@hpc.ufl.edu	2011-09-14	102.7 Mb
<input type="checkbox"/> hg19.chr6.bam ▾		om@hpc.ufl.edu	2011-09-14	65.7 Mb
<input type="checkbox"/> hg19.chr7.bam ▾		om@hpc.ufl.edu	2011-09-14	89.9 Mb
<input type="checkbox"/> hg19.chr8.bam ▾		om@hpc.ufl.edu	2011-09-14	85.9 Mb
<input type="checkbox"/> hg19.chr9.bam ▾		om@hpc.ufl.edu	2011-09-14	64.8 Mb

For selected datasets:

Go

What's inside

Galaxy / UF HPC / Analyze Data Workflow Shared Data Help User

Tools Options

- [Get Data](#)
- [Send Data](#)
- [ENCODE Tools](#)
- [Lift-Over](#)
- [Text Manipulation](#)
- [Filter and Sort](#)
- [Join, Subtract and Group](#)
- [Convert Formats](#)
- [Extract Features](#)
- [Fetch Sequences](#)
- [Fetch Alignments](#)
- [Get Genomic Scores](#)
- [Operate on Genomic Intervals](#)
- [Statistics](#)
- [Graph/Display Data](#)
- [Regional Variation](#)
- [Multiple regression](#)
- [Multivariate Analysis](#)
- [Evolution](#)
- [Motif Tools](#)
- [Multiple Alignments](#)
- [Metagenomic analyses](#)
- [FASTA manipulation](#)
- [NCBI BLAST+](#)
- [NGS: QC and manipulation](#)
- [NGS: Picard \(beta\)](#)
- [NGS: Mapping](#)
- [NGS: Indel Analysis](#)
- [NGS: RNA Analysis](#)
- [NGS: SAM Tools](#)
 - [Filter SAM on bitwise flag values](#)
 - [Convert SAM to interval](#)
 - [SAM-to-BAM converts SAM format to BAM format](#)
 - [BAM-to-SAM](#)** converts BAM format to SAM format

Merge BAM files Merge SAM files

 The following job has been successfully added to the queue:

2: BAM-to-SAM on data 1: converted SAM

You can check the status of queued jobs and view the resulting data by refreshing the **History** pane. When the job has been run the status will change from 'running' to 'finished' if completed successfully or 'error' if problems were encountered.

History Options

MACS hg19 80.8 Mb

2: BAM-to-SAM on data 1: converted SAM

1: hg19.chr10.bam

```

@SQ  SN:chrUn_g1000248  LN:39786
@SQ  SN:chrUn_g1000249  LN:38502
@SQ  SN:chrX LN:155270560
@SQ  SN:chrY LN:59373566
@PG  ID:Bowtie  VN:0.12.5  CL:"bowtie --chunkmbs 1024 --sam --solexa1.3-quals -e 70 -M 1 -n 2 -l 28 --tryhard"
HWUSI-EAS1654_0011:7:101:15569:18265#0/1 16  chr10  60132  0  40M  *  0  0  0  TTAATTGACG
HWUSI-EAS1654_0011:7:70:15927:14469#0/1 16  chr10  60156  0  40M  *  0  0  0  TTGAGTTCCGTTGAGTTI
HWUSI-EAS1654_0011:7:77:2963:15680#0/1 16  chr10  60189  0  40M  *  0  0  0  TCTTCCACAAGGGATTGTTI
HWUSI-EAS1654_0011:7:56:13734:7224#0/1 0   chr10  60478  0  40M  *  0  0  0  CGCCTTGGAAAGGACAT
HWUSI-EAS1654_0011:7:27:17072:12387#0/1 0   chr10  60491  255 40M  *  0  0  0  AGCATTATCCCCAGCAAA
HWUSI-EAS1654_0011:7:41:17138:6404#0/1 0   chr10  60491  255 40M  *  0  0  0  AGCATATATCCCCAGCAAA
HWUSI-EAS1654_0011:7:82:1846:20862#0/1 0   chr10  60491  255 40M  *  0  0  0  AGCATATATCCCCAGCAAA
HWUSI-EAS1654_0011:7:96:15342:7286#0/1 16  chr10  60513  0  40M  *  0  0  0  TCCGGTTTTTGAAGTCI
HWUSI-EAS1654_0011:7:91:12232:19734#0/1 0   chr10  60618  0  40M  *  0  0  0  AATCTTTGTTTACAT
HWUSI-EAS1654_0011:7:43:18181:2553#0/1 0   chr10  60918  0  40M  *  0  0  0  GAAGTATCAATATGCCTT
HWUSI-EAS1654_0011:7:43:15903:1917#0/1 16  chr10  61129  0  40M  *  0  0  0  TTTGTATTGGTAGGATAA
HWUSI-EAS1654_0011:7:11:8621:5776#0/1 16  chr10  61203  0  40M  *  0  0  0  ATGAGGCTCACTCTGTC
HWUSI-EAS1654_0011:7:44:10220:2559#0/1 0   chr10  62846  0  40M  *  0  0  0  ATACTGGGGAGGAGCTGTC
HWUSI-EAS1654_0011:7:95:15568:1582#0/1 16  chr10  63074  0  40M  *  0  0  0  TGAAAAGCCAATGCTGC
HWUSI-EAS1654_0011:7:32:3459:2766#0/1 0   chr10  63307  0  40M  *  0  0  0  AAAGGACATATACTTGC
HWUSI-EAS1654_0011:7:89:18639:10678#0/1 0   chr10  63307  0  40M  *  0  0  0  AAAGGACATATACTTGC
HWUSI-EAS1654_0011:7:109:19350:5114#0/1 16  chr10  63367  0  40M  *  0  0  0  TACAGCTGATGCTTCTG
HWUSI-EAS1654_0011:7:68:3139:9708#0/1 16  chr10  63523  0  40M  *  0  0  0  CCAAAGATGGTCACAT
HWUSI-EAS1654_0011:7:27:15884:16777#0/1 0   chr10  63723  0  40M  *  0  0  0  CAGTCTCAGGCCCTAGAC
HWUSI-EAS1654_0011:7:64:1626:5553#0/1 0   chr10  63915  0  40M  *  0  0  0  AGCTAATCAGGGAGGGC
HWUSI-EAS1654_0011:7:21:7450:15409#0/1 0   chr10  64133  0  40M  *  0  0  0  GACAAGGCTTTGATTTA
HWUSI-EAS1654_0011:7:67:16528:10957#0/1 0   chr10  64143  0  40M  *  0  0  0  TTGATTAAACCCAATCCCA
HWUSI-EAS1654_0011:7:61:13906:4548#0/1 0   chr10  64190  0  40M  *  0  0  0  TATGAGCAAAGTCTCCAA
HWUSI-EAS1654_0011:7:42:8178:16716#0/1 16  chr10  64272  0  40M  *  0  0  0  ATTCCTAAAGCCAGGAA
HWUSI-EAS1654_0011:7:64:10597:5725#0/1 16  chr10  64305  0  40M  *  0  0  0  TAACTCTAGGAAAACCTCC
HWUSI-EAS1654_0011:7:50:6555:17127#0/1 16  chr10  64375  0  40M  *  0  0  0  TGGGAAATTTCATCACAAA
HWUSI-EAS1654_0011:7:119:10260:12806#0/1 0   chr10  64633  0  40M  *  0  0  0  TGAAGGAAAG
HWUSI-EAS1654_0011:7:117:5789:14945#0/1 0   chr10  64648  0  40M  *  0  0  0  GTCATTTTCAGACAAACAA
HWUSI-EAS1654_0011:7:49:10018:10089#0/1 0   chr10  64844  0  40M  *  0  0  0  AAAGAGCATGATGAAAGC
HWUSI-EAS1654_0011:7:81:5640:15183#0/1 0   chr10  65212  0  40M  *  0  0  0  ACTGGAGCTCCAAATTI
HWUSI-EAS1654_0011:7:67:19633:13182#0/1 0   chr10  65483  0  40M  *  0  0  0  GCCATAAAATGAGTCTCA
HWUSI-EAS1654_0011:7:77:17790:3617#0/1 0   chr10  65626  0  40M  *  0  0  0  CTGAATGAGCATTGGGC
HWUSI-EAS1654_0011:7:60:8645:3117#0/1 16  chr10  65700  0  40M  *  0  0  0  TATCGAACCTCTGGGAT
HWUSI-EAS1654_0011:7:60:6931:13228#0/1 0   chr10  66024  0  40M  *  0  0  0  TCACTAAGAAATGAAACCA
HWUSI-EAS1654_0011:7:76:1871:15186#0/1 0   chr10  66045  0  40M  *  0  0  0  GATATTACAACGTACACCC
HWUSI-EAS1654_0011:7:114:9163:3182#0/1 0   chr10  66273  0  40M  *  0  0  0  CGGATTTCACGCAAGAA

```

MACS (NGS: Peak Calling)

Galaxy / UF HPC / Analyze Data Workflow Shared Data Help User

Tools Options ▾

- [Get Data](#)
- [Send Data](#)
- [ENCODE Tools](#)
- [Lift-Over](#)
- [Text Manipulation](#)
- [Filter and Sort](#)
- [Join, Subtract and Group](#)
- [Convert Formats](#)
- [Extract Features](#)
- [Fetch Sequences](#)
- [Fetch Alignments](#)
- [Get Genomic Scores](#)
- [Operate on Genomic Intervals](#)
- [Statistics](#)
- [Graph/Display Data](#)
- [Regional Variation](#)
- [Multiple regression](#)
- [Multivariate Analysis](#)
- [Evolution](#)
- [Motif Tools](#)
- [Multiple Alignments](#)
- [Metagenomic analyses](#)
- [FASTA manipulation](#)
- [NCBI BLAST+](#)
- [NGS: QC and manipulation](#)
- [NGS: Picard \(beta\)](#)
- [NGS: Mapping](#)
- [NGS: Indel Analysis](#)
- [NGS: RNA Analysis](#)
- [NGS: SAM Tools](#)
- [NGS: GATK Tools](#)
- [NGS: Peak Calling](#)
- [NGS: Simulation](#)
- [SNP/WGA: Data; Filters](#)

History Options ▾

- MACS hg19 80.8 Mb
- 1: hg19.chr10.bam

UF UNIVERSITY of FLORIDA UF HPC center

UFL HPC Galaxy News:

- [2001-08-09: Prototype Galaxy Instance](#)

An instance of [Galaxy Platform](#) for Biological Research Computing was brought online at the University of Florida [High-Performance Computing Center](#) for testing and demonstration purposes. This instance is not available for public use, yet. However, you can [email HPC](#) or the [biological applications support](#) directly to request to be notified of its general availability.

The Galaxy project is supported in part by [NSF](#), [NHGRI](#), and the [Huck Institutes of the Life Sciences](#).

NGS: Peak Calling

- MACS Model-based Analysis for ChIP-Seq

Submission form

Tools Options ▾

[Get Data](#)
[Send Data](#)
[ENCODE Tools](#)
[Lift-Over](#)
[Text Manipulation](#)
[Filter and Sort](#)
[Join, Subtract and Group](#)
[Convert Formats](#)
[Extract Features](#)
[Fetch Sequences](#)
[Fetch Alignments](#)
[Get Genomic Scores](#)
[Operate on Genomic Intervals](#)
[Statistics](#)
[Graph/Display Data](#)
[Regional Variation](#)
[Multiple regression](#)
[Multivariate Analysis](#)
[Evolution](#)
[Motif Tools](#)
[Multiple Alignments](#)
[Metagenomic analyses](#)
[FASTA manipulation](#)
[NCBI BLAST+](#)
[NGS: QC and manipulation](#)
[NGS: Picard \(beta\)](#)
[NGS: Mapping](#)
[NGS: Indel Analysis](#)
[NGS: RNA Analysis](#)
[NGS: SAM Tools](#)
[NGS: GATK Tools](#)
[NGS: Peak Calling](#)

- [MACS Model-based Analysis for ChIP-Seq](#)
- [CCAT Control-based ChIP-seq Analysis Tool](#)

MACS

Treatment file:
1: hg19.chr10.bam

Input file:
Selection is Optional

Format:
Auto

Effective Genome Size:
Human (hg19)

Tag size (Optional):
25

P-Value:
1e-05

Keep duplicate tags at the exact same location?:
 Keep ALL
 Auto by Binomial
 Keep Single

Use Model?:
True

small fold enrichment for model building:
10

large fold:
30

Advanced Options:
No

Diagnosis Report:
No

Execute

History Options ▾

MACS hg19 400.5 MiB

2: BAM-to-SAM on data 1: converted SAM

1: hg19.chr10.bam

MACS options

- Basic:
 - Treatment file: **Your alignment file – choose BAM file**
 - Effective genome size: **Human (hg19) – must set once**
- Advanced:
 - Use model or shift size
 - Model - fold enrichment (small and large): 10:30
 - Bandwidth – scan bandwidth size for model or $\frac{1}{2}$ window size without the model: default is 300

Submit the job to cluster

Galaxy / UF HPC / Analyze Data Workflow Shared Data Help User

Parameter:
300

Use Lambda?:
 True
 False

Small Lambda:
1000

Large Lambda:
10000

Generate a wig file?:
 Yes
 No

Diagnosis Report:
No ▾

Execute

Cluster job run

 Galaxy / UF HPC / Analyze Data Workflow Shared Data Help User

Tools Options ▾

- [Get Data](#)
- [Send Data](#)
- [ENCODE Tools](#)
- [Lift-Over](#)
- [Text Manipulation](#)
- [Filter and Sort](#)
- [Join, Subtract and Group](#)
- [Convert Formats](#)
- [Extract Features](#)
- [Fetch Sequences](#)
- [Fetch Alignments](#)
- [Get Genomic Scores](#)
- [Operate on Genomic Intervals](#)
- [Statistics](#)
- [Graph/Display Data](#)
- [Regional Variation](#)
- [Multiple regression](#)
- [Multivariate Analysis](#)
- [Evolution](#)
- [Motif Tools](#)

 The following job has been successfully added to the queue:

- 3: MACS peaks on hg19.chr10.bam
- 4: MACS summits on hg19.chr10.bam
- 5: MACS xls on hg19.chr10.bam
- 6: MACS wiggle on hg19.chr10.bam
- 7: MACS job log on hg19.chr10.bam
- 8: MACS diagnosis report on hg19.chr10.bam

You can check the status of queued jobs and view the resulting data by refreshing the **History** pane. When the job has been run the status will change from 'running' to 'finished' if completed successfully or 'error' if problems were encountered.

Options ▾

- MACS 400.5 Mb hg19
- 8: [MACS diagnosis report on hg19.chr10.bam](#)
- 7: [MACS job log on hg19.chr10.bam](#)
- 6: [MACS wiggle on hg19.chr10.bam](#)
- 5: [MACS xls on hg19.chr10.bam](#)
- 4: [MACS summits on hg19.chr10.bam](#)
- 3: [MACS peaks on hg19.chr10.bam](#)

Job completion

 Galaxy / UF HPC / Analyze Data Workflow Shared Data Help User

Tools Options ▾

- [Get Data](#)
- [Send Data](#)
- [ENCODE Tools](#)
- [Lift-Over](#)
- [Text Manipulation](#)
- [Filter and Sort](#)
- [Join, Subtract and Group](#)
- [Convert Formats](#)
- [Extract Features](#)
- [Fetch Sequences](#)
- [Fetch Alignments](#)
- [Get Genomic Scores](#)
- [Operate on Genomic Intervals](#)
- [Statistics](#)
- [Graph/Display Data](#)
- [Regional Variation](#)
- [Multiple regression](#)
- [Multivariate Analysis](#)
- [Evolution](#)

 The following job has been successfully added to the queue:

- 3: MACS peaks on hg19.chr10.bam
- 4: MACS summits on hg19.chr10.bam
- 5: MACS xls on hg19.chr10.bam
- 6: MACS wiggle on hg19.chr10.bam
- 7: MACS job log on hg19.chr10.bam
- 8: MACS diagnosis report on hg19.chr10.bam

You can check the status of queued jobs and view the resulting data by refreshing the **History** pane. When the job has been run the status will change from 'running' to 'finished' if completed successfully or 'error' if problems were encountered.

Options ▾

- MACS 498.3 Mb hg19
- [8: MACS diagnosis report on hg19.chr10.bam](#)
- [7: MACS job log on hg19.chr10.bam](#)
- [6: MACS wiggle on hg19.chr10.bam](#)
- [5: MACS xls on hg19.chr10.bam](#)
- [4: MACS summits on hg19.chr10.bam](#)
- [3: MACS peaks on hg19.chr10.bam](#)

Build a genome browser track

The screenshot shows the Galaxy web interface with three main panels: a left sidebar, a central tool panel, and a right history panel.

Left Sidebar (Tools):

- Get Data
- Send Data
- ENCODE Tools
- Lift-Over
- Text Manipulation
- Filter and Sort
- Join, Subtract and Group
- Convert Formats
- Extract Features
- Fetch Sequences
- Fetch Alignments
- Get Genomic Scores
- Operate on Genomic Intervals
- Statistics
- Graph/Display Data
 - Histogram of a numeric column
 - Scatterplot of two numeric columns
 - Bar chart for multiple columns
 - Plotting tool for multiple series and graph types
 - Boxplot of quality statistics
 - GMAJ Multiple Alignment Viewer
 - LAJ Pairwise Alignment Viewer
 - Build custom track for UCSC genome browser

Central Panel (Build custom track):

Build custom track

Tracks

Add new Track (button, circled in red)

Execute

Information:

i This tool allows you to build custom tracks using datasets in your history for the UCSC genome browser. You can view these custom tracks on the UCSC genome browser by clicking on **display** at **UCSC main/test** link in the history panel of the output dataset.

⚠ Please note that this tool requires **all input datasets(tracks) to have the same genome build**. The tool throws an error when this requirement is not met. You may then have to choose a valid dataset or remove invalid tracks.

Right Panel (History):

Index	Dataset	Actions
8	MACS hg19	498.3 Mb
7	MACS diagnosis report on hg19.chr10.bam	
6	MACS job log on hg19.chr10.bam	
5	MACS wiggle on hg19.chr10.bam	
4	MACS xls on hg19.chr10.bam	
3	MACS summits on hg19.chr10.bam	
2	MACS peaks on hg19.chr10.bam	
1	BAM-to-SAM on data 1: converted SAM	
	hg19.chr10.bam	

Submit a track build job

Build custom track

Tracks

Track 1

Dataset:
4: MACS summits on hg19.chr10.bam

name:
Chr10LANA

description:

Color:
Black

Visibility:
Dense

Remove Track 1

Add new Track

Execute

i This tool allows you to build custom tracks using datasets in your history for the UCSC genome browser. You can view these custom tracks on the UCSC genome browser by clicking on **display** at **UCSC main/test** link in the history panel of the output dataset.

⚠ Please note that this tool requires **all input datasets(tracks) to have the same genome build**. The tool throws an error when this requirement is not met. You may then have to choose a valid dataset or remove invalid tracks.

Open the track

Tools Options ▾

[Get Data](#)
[Send Data](#)
[ENCODE Tools](#)
[Lift-Over](#)
[Text Manipulation](#)
[Filter and Sort](#)
[Join, Subtract and Group](#)
[Convert Formats](#)
[Extract Features](#)
[Fetch Sequences](#)
[Fetch Alignments](#)
[Get Genomic Scores](#)
[Operate on Genomic Intervals](#)
[Statistics](#)
[Graph/Display Data](#)

- [Histogram](#) of a numeric column
- [Scatterplot](#) of two numeric columns

```
track name="Chr10LANA" description="User Supplied Track (from Galaxy)" color=0,0,255 visibility=1
chr10 309835 311665 MACS_peak_1
134.30
chr10 374946 376165 MACS_peak_2
87.06
chr10 382566 385025 MACS_peak_3
54.46
chr10 439141 440977 MACS_peak_4
53.43
chr10 1030693 1036216 MACS_peak_5
68.77
chr10 1093464 1096423 MACS_peak_6
126.75
chr10 1196247 1198127 MACS_peak_7
68.34
chr10 3237793 3240452 MACS_peak_8
62.17
chr10 3268557 3270788 MACS_peak_9
56.84
chr10 3355912 3357691 MACS_peak_10
98.16
chr10 3371713 3374115 MACS_peak_11
```

History Options ▾

MACS hg19 498.3 Mb

9: Build custom track on data 4 and data 3
995 lines, 3 comments
format: customtrack, database: ?
Info: Generated a custom track containing 2 subtracks.

1	2
track name="Chr10LANA" description="User Supplied Track (from Galaxy)" color=0,0,255 visibility=1	
chr10 309835 311665 MACS_peak_1	309835
chr10 374946 376165 MACS_peak_2	374946
chr10 382566 385025 MACS_peak_3	382566
chr10 439141 440977 MACS_peak_4	439141
chr10 1030693 1036216 MACS_peak_5	1030693

Genome Browser

Tools Options ▾

Get Data

- [Upload File from your computer](#)
- [UCSC Main table browser](#)
- [UCSC Archaea table browser](#)
- [BX main browser](#)
- [BioMart Central server](#)
- [GrameneMart Central server](#)
- [Flymine server](#)
- [modENCODE fly server](#)
- [modENCODE modMine server](#)
- [Ratmine server](#)
- [YeastMine server](#)
- [modENCODE worm server](#)
- [Wormbase server](#)
- [EuPathDB server](#)
- [EncodeDB at NHGRI](#)
- [EpiGRAPH server](#)

Send Data

[ENCODE Tools](#)

[Lift-Over](#)

[Text Manipulation](#)

[Filter and Sort](#)

[Join, Subtract and Group](#)

[Convert Formats](#)

[Extract Features](#)

[Fetch Sequences](#)

[Fetch Alignments](#)

Home Genomes **Genome Browser** Blat Tables Gene Sorter PCR Session FAQ

Table Browser

Use this program to retrieve the data associated with a track in text format, to calculate intersections between tracks, and to retrieve DNA sequence covered by a track. For help in using this application see [Using the Table Browser](#) for a description of the controls in this form, the [User's Guide](#) for general information and sample queries, and the OpenHelix Table Browser [tutorial](#) for a narrated presentation of the software features and usage. For more complex queries, you may use [Galaxy](#) or our [public MySQL server](#). To examine the biological function of your set through annotation enrichment, send the data to [GREAT](#). Refer to the [Credits](#) page for the list of contributors and usage restrictions associated with this data.

clade: Mammal genome: Human assembly: Feb. 2009 (GRCh37/hg19)

group: Custom Tracks track: Chr9 hg19 LANA MACS peaks manage custom tracks

track hubs

table: ct_Chr9hg19LANAMACSpeaks_3943 describe table schema

region: genome position chr9:1-140127172 lookup define regions

identifiers (names/accessions): paste list upload list

filter: create

intersection: create

correlation: create

output format: BED - browser extensible data Send output to Galaxy GREAT

output file: (leave blank to keep output in browser)

file type returned: plain text gzip compressed

get output summary/statistics

To reset all user cart settings (including custom tracks), [click here](#).

Add a custom track

Home Genomes Blat Tables Gene Sorter PCR DNA Convert Ensembl

UCSC Genome Browser on Human Feb. 2009 (GRCh37/hg19) Assembly

move <<< << < > >> >>> zoom in 1.5x 3x 10x base zoom out 1.5x 3x 10x

position/search chr10:1-135,534,747 gene jump clear size 135,534,747 bp. configure

chr10 (p15.3-q26.3) [p14 p13] [q21.1]

scale chr10: 50 Mb 50000000 100000000

move start < 2.0 > move end < 2.0 >

Click on a feature for details. Click or drag in the base position track to zoom in. Click side bars for track options. Drag side bars or labels up or down to reorder tracks. Drag tracks left or right to new position.

track search default tracks default order hide all add custom tracks track hubs configure reverse resize refresh

collapse all expand all

Use drop-down controls below and press refresh to alter tracks displayed. Tracks with lots of items will automatically be displayed in more compact modes.

Mapping and Sequencing Tracks refresh

Base Position Chromosome Band STS Markers 18 FISH Clones Recomb Rate Map Contigs

dense ▲ hide ▲ hide ▲ hide ▲ hide ▲

Paste track data

Home Genomes Genome Browser Blat Tables Gene Sorter PCR Se

Add Custom Tracks

clade genome assembly

Display your own data as custom annotation tracks in the browser. Data must be formatted in [I](#) [GFF](#), [GTF](#), [WIG](#), [bigWig](#), [MAF](#), [BAM](#), [BED detail](#), [Personal Genome SNP](#), or [PSL](#) formats. To [track](#) and [browser](#) line attributes as described in the [User's Guide](#). URLs for data in the bigBed and embedded in a track line in the box below. Publicly available custom tracks are listed [here](#). Examp

Paste URLs or data: Or upload: no file selected

```
track name="Chr10LANA" description="User Supplied Track (from Galaxy)"
color=0,0,255 visibility=1
chr10 309835 311665 MACS_peak_1 134.30
chr10 374946 376165 MACS_peak_2 87.06
chr10 382566 385025 MACS_peak_3 54.46
chr10 439141 440977 MACS_peak_4 53.43
chr10 1030693 1036216 MACS_peak_5 68.77
```

Optional track documentation: Or upload: no file selected

View track

Genomes Blat Tables Gene Sorter PCR DNA Convert Ensembl NCBI PDF/F

UCSC Genome Browser on Human Feb. 2009 (GRCh37/hg19) Assembly

move <<< << < > >> >>> zoom in 1.5x 3x 10x base zoom out 1.5x 3x 10x

position/search chr10:310,802-310,803 gene jump clear size 2 bp. configure

chr10 (p15.3) p14 p13 q21.1 21.3 23.1 25.1

Scale
chr10:
--->
Chr10LANA

1 bases |
A 3108021 T
My Custom Track

move start < 2.0 > move end
track search default tracks default order hide all manage custom tracks track hubs configure reverse resize refresh

collapse all Use drop-down controls below and press refresh to alter tracks displayed. expand all

Tracks with lots of items will automatically be displayed in more compact modes.

Custom Tracks refresh

- My Custom Track drag to reorder

Chr10LANA

dense

Zoom in, pan, etc.

omes Blat Tables Gene Sorter PCR DNA Convert Ensembl NCBI PDF/

UCSC Genome Browser on Human Feb. 2009 (GRCh37/hg19) Assembly

move <<< << < > >> >>> zoom in 1.5x 3x 10x base zoom out 1.5x 3x 10x

position/search chr10:86,249,385-97,585,01 gene jump clear size 11,335,633 bp. configure

chr10 (q23.1-q24.1) p14 p13 q21.1

Scale 5 Mb

chr10: 86000000 89000000 90000000 91000000 92000000 93000000 94000000 95000000 96000000 97000000

Chr10LANA My Custom Track

ove start move end

< 2.0 > < 2.0 >

ck search default tracks default order hide all manage custom tracks track hubs configure reverse resize refresh

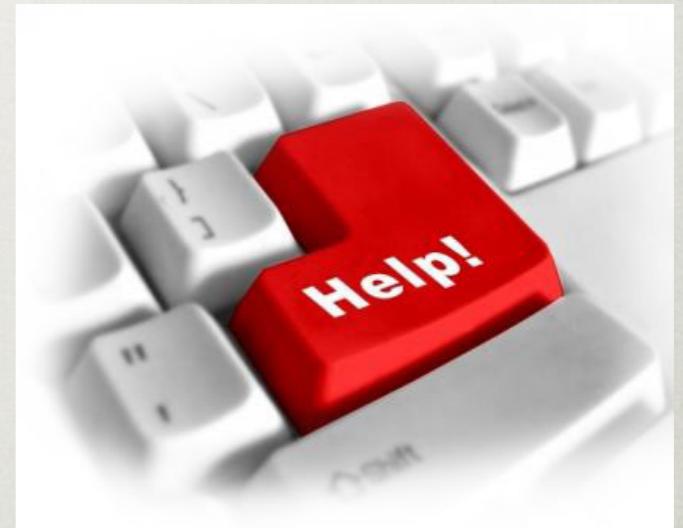
collapse all expand all

Use drop-down controls below and press refresh to alter tracks displayed.

Tracks with lots of items will automatically be displayed in more compact modes.

Custom Tracks refresh

Chr10LANA


dense

Mapping and Sequencing Tracks refresh

Thank you!

- <http://wiki.hpc.ufl.edu>
- <https://fisher.bioinformatics.ufl.edu>
- <http://hpc.ufl.edu/support>
 - Frequently Asked Questions
 - Account set up and maintenance
 - Problem report submission
 - om@hpc.ufl.edu - Biological applications support
 - magitz@ufl.edu - Training

