

Campus Research Network Overview

Chris Griffin
Chief Network Architect
University of Florida & Florida LambdaRail

5/6/2013

Agenda

- ▶ Research Networking at UF
 - A brief history
 - CRNv2
- ▶ Florida LambdaRail
 - What is it?
 - How it provides for UFL's Research Needs
- ▶ Internet2 Innovation Platform
 - Design
 - Requirements
 - Use cases

A Brief History @UF

- ▶ Historically, all research was done over the production UF network.
 - Late 90s: ATM, then 100Mbps Ethernet backbone in a ring topology.
 - Early 2000's: Gigabit Ethernet backbone in a star topology.
 - Today: Moving toward ubiquitous dual 10G backbone links over the next 6 months.
- ▶ Security was not as big of an issue.
 - Public IP use was high.
 - No central firewall.
 - Some network access control in use.
 - IDS was able to handle campus traffic.

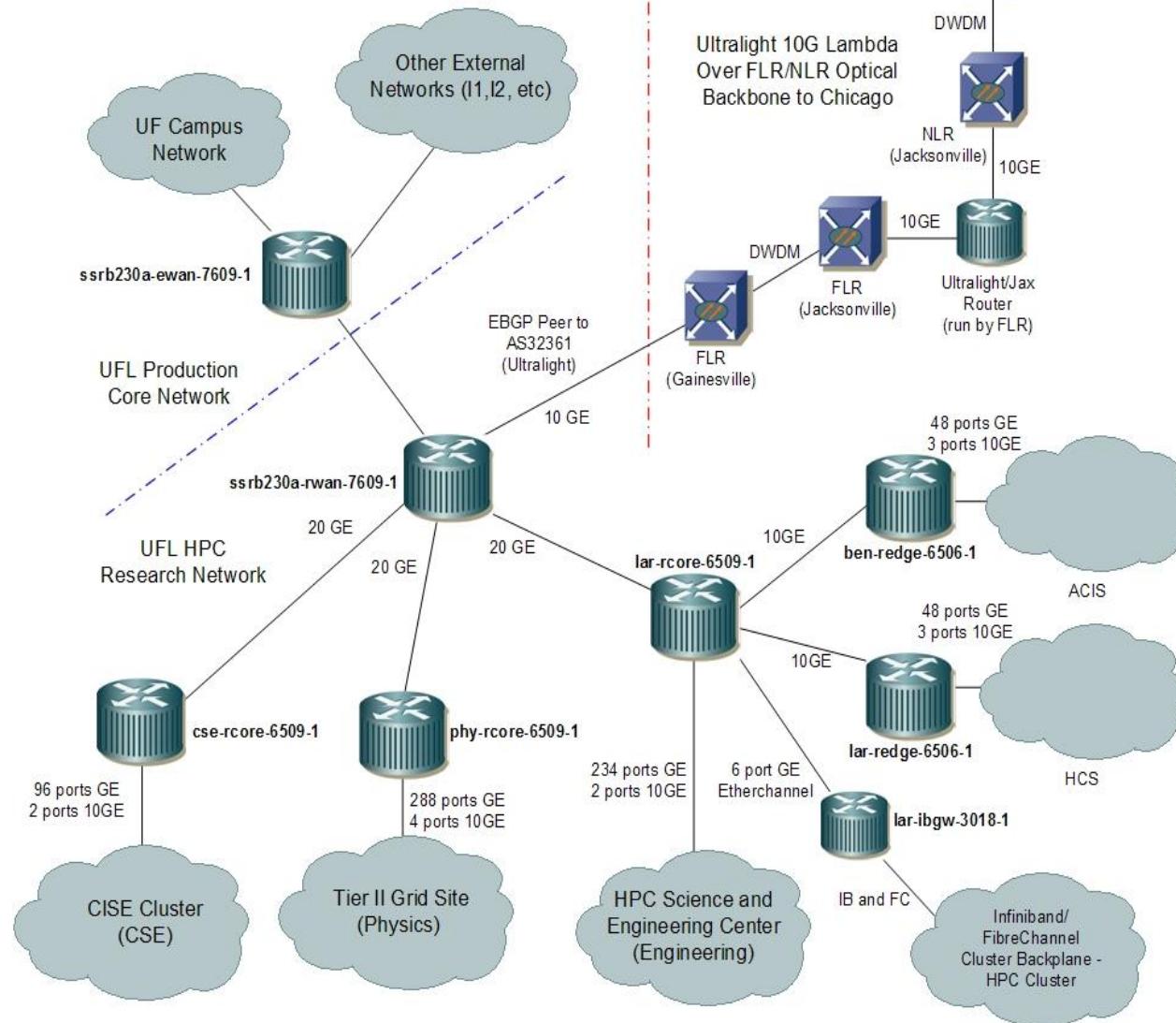
A Brief History @UF (cont)

- ▶ External R&E focused connectivity was limited, but stayed ahead of demand.
 - OC-3 to Internet2 (vBNS backbone.)
 - OC-12 to Internet2 Abilene Backbone (some of this was carved off for Internet.)
 - Much was still likely going over somewhat congested Internet paths.

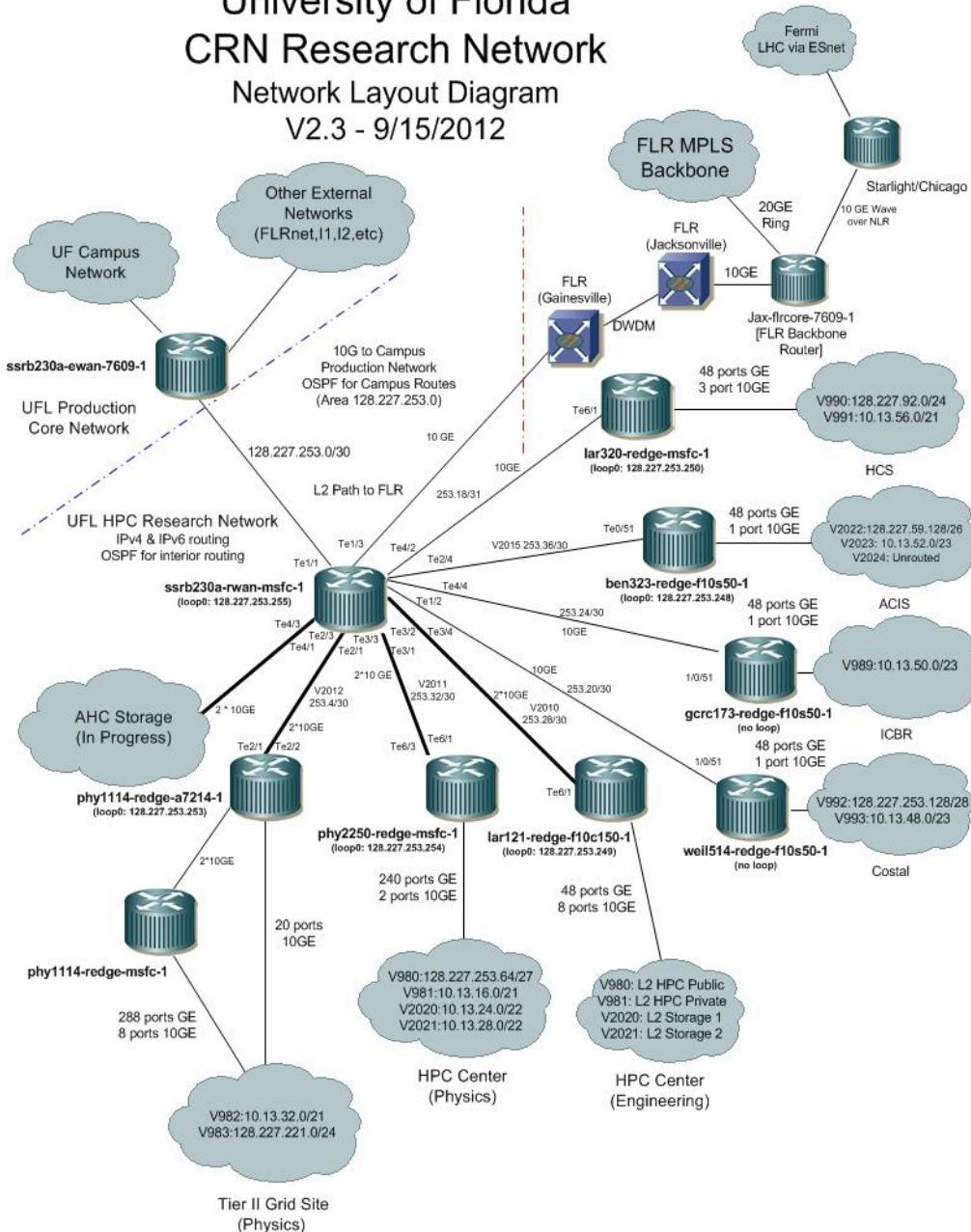
Need for a change

- ▶ Aggregation of research computing resources.
 - HPC Center
 - CMS Tier 2
- ▶ Increased focus on moving data around campus and externally
 - LHC (CMS)
 - Ultralight
- ▶ New regional and national network resources emerging
 - NLR
 - FLR

Need for a change (cont)


- ▶ Increase in expected data rates exceed what typical security devices could handle.
 - Do we slow the research or allow unchecked traffic deep into the campus production network?
- ▶ NSF MRI grant provided for the first “Campus Research Network” (CRN).
 - CASTOR: A High-Performance Communication and Storage Backbone for Data-Intensive Scientific and Engineering Computing
- ▶ Planning began in 2003. Grant submitted 2004. First light was in 2005.

Campus Research Network v1


- ▶ CRNv1 provided for
 - 2*10Gbps research oriented network backbone to CISE, Physics, and Larsen Hall.
 - 1*10Gbps connectivity to another location in Larsen, as well as Benton.
 - 1*10Gbps dedicated research connection to FLR via a 10Gbps wave to Jacksonville, FL.
 - 1*10Gbps connectivity to the campus production network.
- ▶ CRN was connected “off to the side” of the production network, and outside of the security boundary.
 - This is now called a “Science DMZ”

CRNv1 Topology

- 2006

University of Florida
CRN Research Network
Network Layout Diagram
V2.3 - 9/15/2012

CRNv1 Topology – Late 2012

Time for an Upgrade

- ▶ Over time, new sites have been added, sites have moved around, and there have been very minor equipment upgrades.
- ▶ Most of the equipment originally purchased in 2005 is still in use (7+ years!)
- ▶ Some of the equipment is no longer under support contract due to EOL schedule.
- ▶ Nearly all will become EOL this year.
- ▶ Starting to see some contention on certain 10G links.

Time for an Upgrade (cont)

- ▶ 10G Research Wave to FLR becoming a limitation.
- ▶ We use “Etherchannel” to bond links together. We have no control over what traffic goes into what link, so congestion is possible with < 20Gbps of traffic.
- ▶ New UFDC/EC site and HPC cluster coming online.
- ▶ New network paradigms such as software defined networking emerging.
- ▶ Did I mention the current gear is **old**?

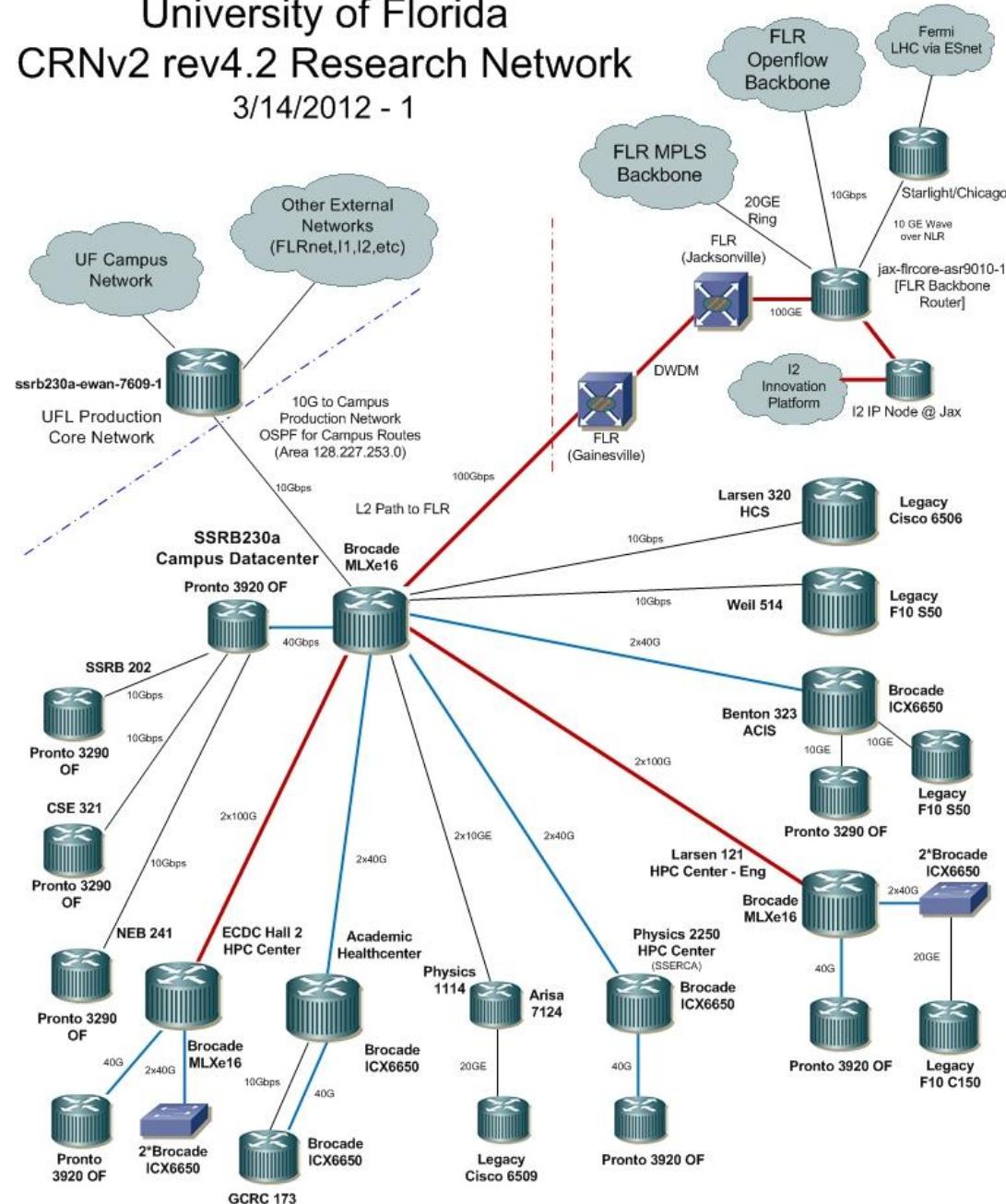
CRNv2 Goals

- ▶ 200Gbps backbone to the primary research compute and data storage locations on campus.
- ▶ Multiple 40Gbps or 10Gbps backbone to smaller research sites on campus.
- ▶ 100Gbps connection to FLR and other research networks.
- ▶ 10G and 40G edge ports.
- ▶ Flexibility to support advanced network paradigms such as SDN/Openflow.
- ▶ Preserve the “Science DMZ” style topology we enjoyed with CRNv1.

CRNv2 Design

- ▶ CRN Sites:
 - Tier 1 (200Gbps): Larsen 121, UFDC/EC.
 - Tier 2 (40/80Gbps): Physics 2250, AHC, Benton, GCRC.
 - Tier 3 (20/10Gbps) Weil, Physics 1114, Larsen 320.
 - Wan (100G) to FLR Jacksonville.
 - Main Campus (10 to 20Gbps).
- ▶ Native Capabilities
 - Line rate IPv4 and IPv6 routing.
 - Multi-Protocol Label Switching and VLAN support to provide transparent Layer 2 transport for off campus circuits and the Openflow testbed.
 - VRF support to enable multiple virtual networks.
 - Redundant route modules, power supplies, fan trays, etc.
 - Many many other features you would expect of high end Enterprise class equipment.

CRNv2 Design (cont)


- ▶ Openflow Testbed:
 - Native: SSRB, NEB, CISE, NS Lab
 - Tunneled: Lar121, UFDC/EC
 - Eventually all Tier 1 and Tier 2 sites will natively support Openflow via code updates. Full support for both SDN and “classical” network operations on the same hardware.
 - Flowvisor and test controller housed within CNS.
 - We are also deploying an Openflow testbed on the FLR backbone.
 - One Openflow switch in each FLR core pop, 10Gbps connected.
 - 10G Statewide SDN ring.
 - The combination of Openflow testbeds along with the connection to the Innovation Platform permits UF to participate in both regional and national SDN efforts.

CRNv2 Design (cont)

- ▶ New Hardware:
 - Brocade MLXe16s at Tier 1 sites
 - Brocade ICX6650s at Tier 1 and Tier 2 sites
 - Existing Hardware at Tier 3 sites
(Cisco/Force10/Arista)
 - Pica8/Pronto Switches at Openflow testbed sites
(3295/3920)
 - Dell R620 servers for perfsonar.

CRNv2 Topology

University of Florida CRNv2 rev4.2 Research Network 3/14/2012 - 1

CRN Upgrade

- ▶ Three distinct projects/grants made the CRNv2 upgrade possible
 - 100G Research Wave/Innovation Platform Connection. Elias Eldayrie, CIO, University of Florida.
 - NSF CC-NIE Network Infrastructure: Dr. Erik Deumens PI
 - NSF MRI “Acquisition of Gatorcloud”: Dr. Andy Li PI

CRNv2 Upgrade Status

- ▶ 100G circuit over FLR to Jacksonville, Innovation Platform 100G connection in Jacksonville and installation of central CRNv2 node at SSRB was completed and operational on January 30th.
- ▶ UFDC/EC and Lar121 Tier 1 sites have been installed and are in production.
- ▶ Tier 2 site installation will be commencing in the next few weeks pending some fiber installation.
- ▶ Openflow switches will start deployment in the next few weeks.


Florida LambdaRail

- ▶ First Light 12/17/2004. Fully Production 4/2005.
- ▶ Member owned, facilities based network.
- ▶ 12 equity owners including UF.
- ▶ Connects all Florida SUS institutions, most major private schools, as well as many Florida College System institutions.
- ▶ UFL is also the site of the FLR Network Operations Center.
 - Engineering.
 - 24x7 support.

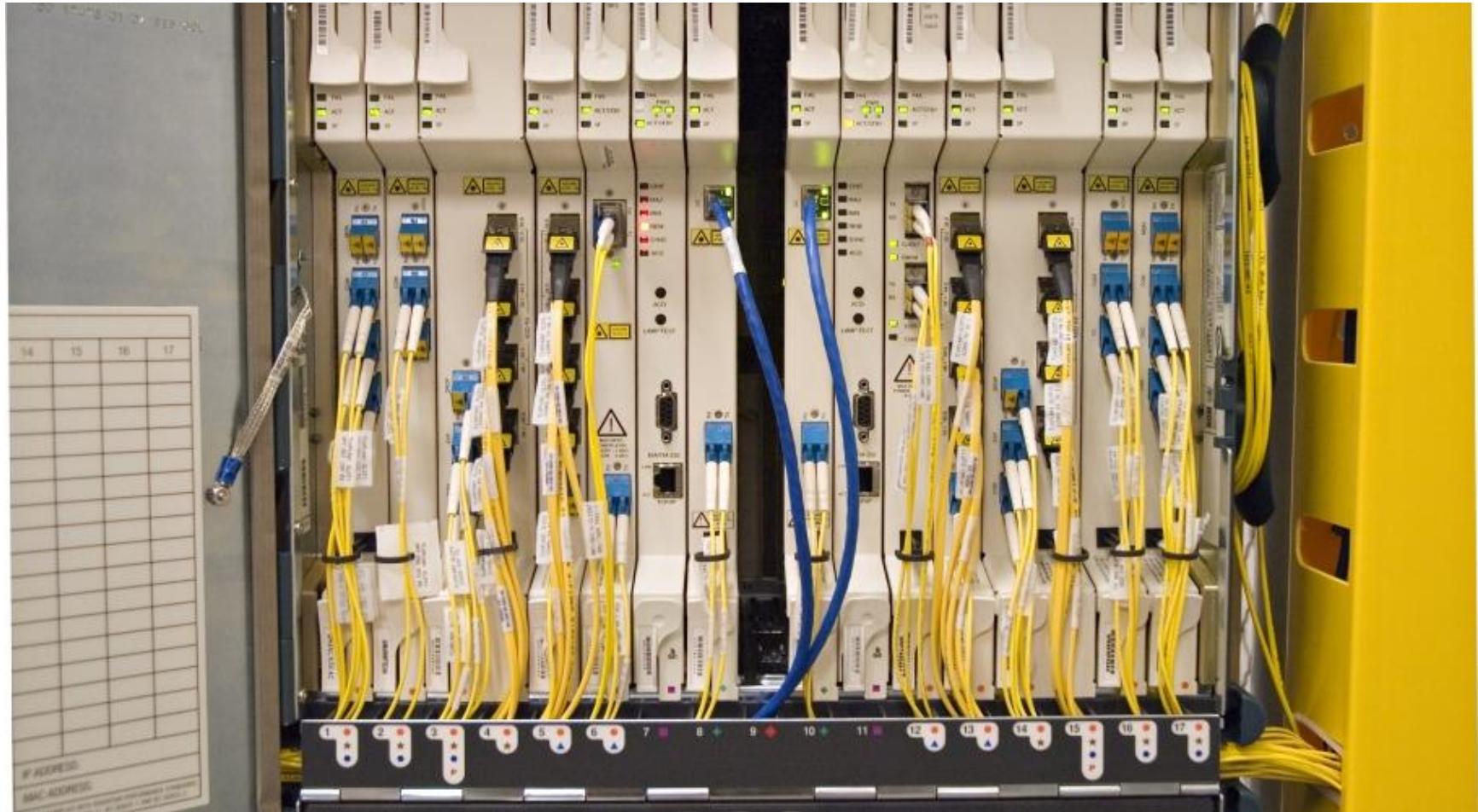
Florida LambdaRail (cont)

- ▶ Optical Network
 - “FLRwave”
 - Dense Wave Division Multiplexing (DWDM) optical network.
 - Up to 32 channels (100Ghz spacing.)
 - 1540 miles of dark fiber around the state.
 - Provides 1G, 2.5G, 10G, 40G, 100G waves between optical add/drop sites.
 - Based on Cisco 15454 optical nodes.
 - 28 locations around the state.
 - 38 active optical shelves.

FLR Optical Topology

Florida LambdaRail (cont)

- ▶ Transport Network
 - “FLRnet”
 - 5 Core nodes (Jax, Orl, Mia, Tpa, Tlh). Several 2nd tier nodes as well.
 - MPLS based transport network. Provides Layer 2 and Layer 3 services.
 - Point to Point Ethernet Circuits (Pseudowires)
 - Commodity Internet Services.
 - Commodity Peering.
 - Google
 - Microsoft
 - Netflix
 - etc


Florida LambdaRail (cont)

- R&E Networking
 - Internet2
 - I2 Innovation Platform
 - National LambdaRail
 - R&E Peering @ Starlight
 - Layer 3 VPN service (“Virtual Backbone”)
 - UF Statewide Backbone VRF
 - Research Backbones (XSEDE, etc)
 - Based on Cisco ASR 9010 routers
 - 10G, 40G, 100G capability.
 - 4M IPv4 routes.

About FLRnet

- ▶ 20G Backbone (dual 10G waves)
- ▶ 150G of Research Peering Capacity
 - 100G Internet2 Innovation Platform/Advanced L2 Service
 - 10G Primary, 10G Secondary to NLR L3
 - 10G to Internet2 direct to Atlanta.
 - 10G to Starlight (used for Esnet peering and other research).
 - Peering with Cwave at 10G.
- ▶ >52G+ of Commodity Peering Capacity.
 - 10G at the NOTA.
 - 10G at TIE.
 - 20G to Google.
 - 1G with Transitrail, 1G+ with CPS.
 - 10G to Akamai AANP.
- ▶ 55G of Internet Capacity.

FLR Optical Node

Typical FLRnet Node

Internet2 Innovation Platform

▶ What is it?

- Next generation Internet2 Network
 - 100G connected.
 - Lower cost nodes (thus more of them, less backhaul)
 - SDN (Openflow) capable
 - Based on Brocade MLXe and Juniper MX Platforms. Most nodes are currently Brocade.
 - Will provide the Advanced Layer 2 Service (AL2S) on day 1.

Internet2 Innovation Platform (Cont)

- Operates over Internet2's upgrade optical network provided by the BTOP award.
- Current production I2 network will continue to operate on the existing I2 backbone. Will eventually migrate to IP based on publicized plans of I2.
- Architecture
 - Internet2 is encouraging a standard R&E networking environment on campuses, at least through the initial phase of the project, through a set of requirements in order to connect.

Internet2 Innovation Platform (Cont)

- Science DMZ
 - Don't run your research network traffic "at scale" through your production network, and thus through your production firewall, ids, etc.
 - Create a purpose built network and connect it outside of the typical campus security parameter.
 - Within the Science DMZ, you must run PerfSonar.
 - Sounds a lot like the UF CRN!
- Layer 2 connectivity at 100G.
 - The intent is for "unlimited bandwidth" or as close as you can come to it. Prevent congestion from being a limiting factor

Internet2 Innovation Platform (Cont)

- Layer 2 paths provide for more deterministic behavior by the network. Typical “hop by hop” routing is replaced by pre-configured paths through the network.
- CRNv2 will provide for this by Jan 2013.
- FLR will be connected to the IP at 100G, thus giving UF a 100G path from the CRN to the IP node in Jax at layer 2.
- SDN Network Capabilities
 - The IP itself will be SDN based. Goal is to provide for ubiquitous end to end SDN capabilities.
 - CRNv2 will have an Openflow testbed on day 1.
 - All Tier 1 and Tier 2 CRNv2 sites will have hardware which is capable of Openflow once we decide to turn it on.
 - CRN is also currently running Dynes, which is another form of SDN.

Internet2 Innovation Platform (Cont)

- Philosophy
 - Unlimited Bandwidth.
 - Ubiquitous Deployment/Environment.
 - End to End.
 - Capabilities
 - Monitoring
 - Disruptive.
 - Researchers free to do new and interesting things.
 - “Friction Free.”
 - Clear of as many network impediments as possible.
 - At Scale.

Internet2 Innovation Platform (Cont)

- ▶ Innovation Platform is being introduced as a limited pilot.
- ▶ University of Florida is 1 of around 14 sites which are part of the pilot program.
- ▶ Connected January 2013.
- ▶ University of Florida is the first site nationwide to complete all three requirements for the Innovation Platform Pilot.
 - 100G connection
 - Science DMZ
 - SDN capability (Dynes project)

Innovation Platform Pilot

What will UF do with the IP

- ▶ Initial use cases center around AL2S.
 - Static high speed L2 circuits between UF and other IP connectors.
 - Research
 - Production Traffic (future)
 - Perfsonar used to monitor health of the network, end to end.
 - General dynamic capability integrated into the CRN.
 - Openflow test/research.
 - Currently planning a project with FNAL to test end to end network/systems/storage performance at scale.
- ▶ What's next?
 - Really up to the research community.
 - IP + SDN capable CRNv2 are foundational infrastructures for disruptive and innovative applications. Please commence disrupting!

Thanks!