

New Storage System Solutions

Craig Prescott
Research Computing

May 2, 2013

Outline

- ▶ Existing storage systems
- ▶ Requirements and Solutions
- ▶ Lustre
- ▶ /scratch/lfs
- ▶ Questions?

Existing Storage Systems

File System	Purpose
/home	Source code, Makefiles, etc.
/scratch/hpc	Job I/O
/project	Longer-term projects, low/ moderate job I/O
/lts	Long-term storage
/rlts	Replicated Long-term storage

Requirements and Solutions

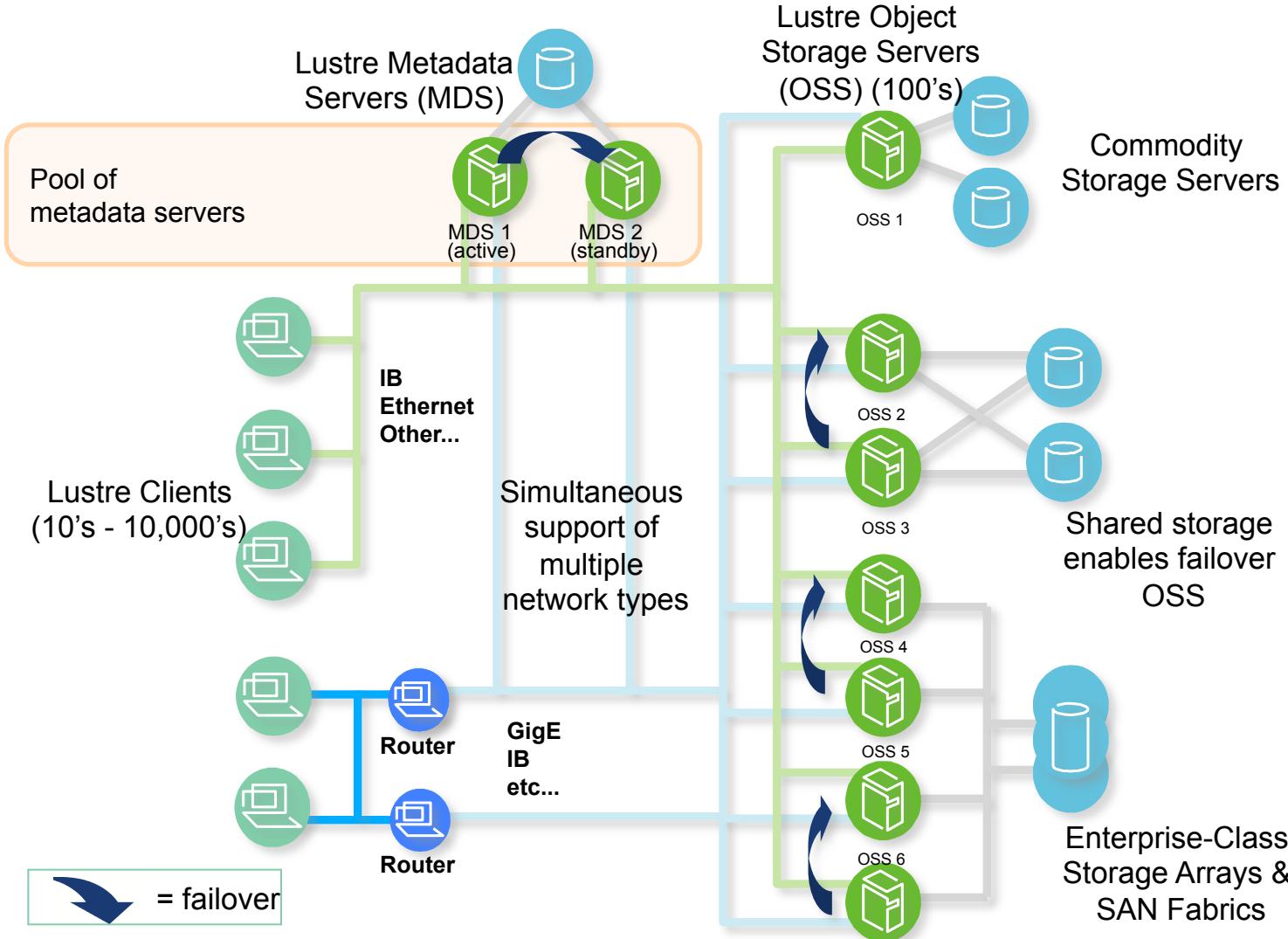
- ▶ Nodes must share data over the network
 - 1000+ compute nodes and 20k+ processors
 - Large scalability, throughput, IOP, and capacity requirements
- ▶ Resilience in the face of component failure
 - RAID
 - High-Availability
- ▶ POSIX Semantics
 - All nodes must maintain consistent views of a file's data and metadata
 - Locking subsystem

Requirements and Solutions

- ▶ Support for High-Performance RDMA networking
- ▶ Only two choices
 - Traditional Network File System (e.g. NFS) or Parallel File System
 - Parallel file systems offer scalability
- ▶ Solutions
 - Good proprietary parallel solutions are available
 - Expensive, vendor lock-in, reduced flexibility
 - Open Source – numerous possibilities
 - UF is a member of OpenSFS
 - Lustre – proven track record, in-house expertise

Lustre – What is it?

- ▶ Open-source parallel file system implementation
 - GPL
 - POSIX compliant(*)
- ▶ Horizontally scalable in capacity and throughput
 - Additional storage and server nodes can be added “online”
- ▶ Scales to very large numbers of clients
- ▶ Files and Directories can be “striped” over multiple servers and storage devices


Lustre – What is it?

- ▶ Supports High-Performance RDMA networking devices
 - RDMA – Remote Direct Memory Access
 - NIC transfers data directly to/from application memory
 - Implemented in InfiniBand interconnect, widely used in HPC environments
- ▶ Built-in High-Availability Support
 - If a server goes down, another server takes over

Lustre – Who uses it?

- ▶ Largest market share in HPC systems
 - Primary file system of the “petascale club”
 - 50-70% of top 10, top 100, and top 500 entries at top500.org in recent years
 - Some very large deployments – many 1000s or tens of 1000s of compute nodes
 - Titan (ORNL), Blue Waters (NCSA), Sequoia (LLNL), Stampede (TACC), are examples of big places
- ▶ Top-tier HPC vendors use Lustre
 - Dell, DDN, Cray, Xyratex, Fujitsu, HP, Bull, ...
- ▶ Minimal requirements - commodity compute and I/O hardware with Linux (any block storage device)

Lustre – Basic Architecture

Lustre Components - Object Storage Servers

- ▶ Object Storage Server (OSS)
 - Server node that hosts storage device(s) and NIC(s)
 - Manages object data and attributes
 - Manages RDMA/zero-copy from clients/routers
 - Can be configured in active-active mode for failover

Lustre Components - Object Storage Targets

- ▶ Object Storage Target (OST)
 - Formatted storage device hosted by OSS
 - Ldiskfs (“ext4+”) file system, zfs option soon – on-disk format is hidden from clients
 - Each OSS can have multiple OSTs – RAID6 arrays are common
 - OSTs are independent, thus enabling linear scaling
 - Optimized for large I/O (1MiB client RPCs)
 - Client writeback cache allows I/O aggregation

Lustre Components - Metadata Server & Target

- ▶ Metadata Server (MDS)
 - Server node with storage and NIC
 - Manages namespace only – filenames, attributes, and ACLs, no data
 - Determines file layout on OSTs at creation time
 - Default policies balance I/O and space usage over OSSs/OSTs
- ▶ Metadata Target (MDT)
 - Storage device hosted by MDS
 - Ldiskfs backing file system
 - Generally a RAID1+0 device

/scratch/lfs

- ▶ 24 OSS nodes
 - Active-Active
 - 128 GB RAM per OSS (read cache)
 - Six RAID6 (“8+2”) OSTs per OSS
 - 1440 2TB drives total
 - 2.1 Petabytes usable
- ▶ ~50 GB/s streaming reads/writes observed
- ▶ ~100k random IOPS for small I/Os
- ▶ Highly-Available
- ▶ FDR InfiniBand Interconnect (56Gb/s)

Historical Perspective

- ▶ /scratch file systems through the years...

Name	Era	# Servers	# Disks	Interconnect	HA?
/scratch/ufhpc	2005-2011	8	144	SDR IB (8Gbps)	N
/scratch/crn	2007-2011	2	144	SDR IB (8Gbps)	N
/scratch/hpc	2011-	8	384(192)	QDR IB (32Gbps)	Y
/scratch/lfs	2013-	24	1440	FDR IB (54Gbps)	Y

Questions?

- ▶ Thank you!